Skip to main content
Log in

Radar Surveillance of Unmanned Aerial Vehicles (Review)

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

Radar surveillance of unmanned aerial vehicles (UAVs) is actively developing area of scientific research. This article provides a review and analysis of publications in recent years devoted to the methods and radar systems of detection and recognition of classes and types of UAVs. It is noted that the most difficult targets for radar detection are low-sized, low-speed small UAVs (drones) flying at low and extremely low altitudes. If large and medium-sized UAVs can be detected by modern radar systems, then for the detection of small UAVs it is advisable to create specialized highly efficient, highly mobile, portable and inexpensive active UAV detection radars. The technical requirements for such radars are defined and recommendations for their implementation are provided. High-performance protection systems based on adaptive lattice filters are offered to protect UAV detection radars from noise jamming and passive interference. It is shown that the research on the methods of recognizing UAV classes and types is a development of the existing theory and technology of radar recognition of air targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. S. Vishnevsky, L. Beylis, V. Klimchenko, "Potential capabilitys of radiotechnical troops radars to detect operational-tactical and tactical unmanned air vehicle," Sci. Technol. Air Force Ukr., n.2(27), p.92 (2017). DOI: https://doi.org/10.30748/nitps.2017.27.18.

    Article  Google Scholar 

  2. G. V. Eremin, A. D. Gavrilov, I. I. Nazarchuk, "Small-Sized Drones as a New Challenge for Air Defense," Armeiskii Vestn. (2015). URI: https://army-news.org/2015/02/malorazmernye-bespilotniki-novaya-problema-dlya-pvo/.

    Google Scholar 

  3. S. I. Makarenko, A. V. Timoshenko, A. S. Vasilchenko, "Counter Unmanned Aerial Vehicles. Part 1. Unmanned aerial vehicle as an object of detection and destruction," Syst. Control. Commun. Secur., n.1, p.109 (2020). DOI: https://doi.org/10.24411/2410-9916-2020-10105.

    Article  Google Scholar 

  4. A. E. Ananenkov, D. V. Маrin, V. M. Nuzhdin, V. V. Rastorguev, P. V. Sokolov, "To the question of small-sized UAVs surveillance," Tr. MAI, n.91, (2016). URI: http://trudymai.ru/eng/published.php?ID=75662.

    Google Scholar 

  5. A. Laučys, S. Rudys, M. Kinka, P. Ragulis, J. Aleksandravičius, D. Jablonskas, D. Bručas, E. Daugėla, L. Mačiulis, "Investigation of detection possibility of UAVs using low cost marine radar," Aviation, v.23, n.2, p.48 (2019). DOI: https://doi.org/10.3846/aviation.2019.10320.

    Article  Google Scholar 

  6. B. Taha, A. Shoufan, "Machine Learning-Based Drone Detection and Classification: State-of-the-Art in Research," IEEE Access, v.7, p.138669 (2019). DOI: https://doi.org/10.1109/ACCESS.2019.2942944.

    Article  Google Scholar 

  7. C. Clemente, A. Balleri, K. Woodbridge, J. J. Soraghan, "Developments in target micro-Doppler signatures analysis: radar imaging, ultrasound and through-the-wall radar," EURASIP J. Adv. Signal Process., v.2013, n.1, p.47 (2013). DOI: https://doi.org/10.1186/1687-6180-2013-47.

    Article  Google Scholar 

  8. J. S. Patel, F. Fioranelli, D. Anderson, "Review of radar classification and RCS characterisation techniques for small UAVs ordrones," IET Radar, Sonar Navig., v.12, n.9, p.911 (2018). DOI: https://doi.org/10.1049/iet-rsn.2018.0020.

    Article  Google Scholar 

  9. S. A. Musa, R. S. A. R. Abdullah, A. Sali, A. Ismail, N. E. A. Rashid, I. P. Ibrahim, A. A. Salah, "A review of copter drone detection using radar systems," Def. S&T Tech. Bull., v.12, n.1, p.16 (2019). URI: http://psasir.upm.edu.my/id/eprint/80464/.

    Google Scholar 

  10. A. I. Godunov, S. V. Shishkov, N. K. Yurkov, "Complex for Detection and Combating Small-Sized Pilotless Aircraft Vehicles," Reliab. Qual. Complex Syst., n.2, p.62 (2014). URI: https://nikas.pnzgu.ru/page/20187.

    Google Scholar 

  11. G. V. Eremin, A. D. Gavrilov, I. I. Nazarchuk, "System Organization for Combating Small-sized UAVs," Arsenal Otechestva, n.6 (2014). URI: https://arsenal-otechestva.ru/article/389-antidrone.

    Google Scholar 

  12. E. Filin, R. Kirichek, "Approaches to the detection micro air vehicle based on the analysis of the electromagnetic spectrum," Telecom IT., v.6, n.2, p.87 (2018). URI: https://elibrary.ru/item.asp?id=35269062.

    Google Scholar 

  13. M. Jahangir, C. Baker, "Persistence surveillance of difficult to detect micro-drones with L-band 3-D holographic radarTM," in 2016 CIE International Conference on Radar (RADAR) (IEEE, Washington, 2016). DOI: https://doi.org/10.1109/RADAR.2016.8059282.

    Chapter  Google Scholar 

  14. W. Zhang, C. Tong, Q. Zhang, Y. Zhang, X. Zhang, "Extraction of Vibrating Features With Dual-Channel Fixed-Receiver Bistatic SAR," IEEE Geosci. Remote Sens. Lett., v.9, n.3, p.507 (2012). DOI: https://doi.org/10.1109/LGRS.2011.2172974.

    Article  Google Scholar 

  15. K. Kim, M. Uney, B. Mulgrew, "Estimation of Drone Micro-Doppler Signatures via Track-Before-Detect in Array Radars," in 2019 International Radar Conference (RADAR) (IEEE, Washington, 2019). DOI: https://doi.org/10.1109/RADAR41533.2019.171375.

    Chapter  Google Scholar 

  16. V. P. Riabukha, V. V. Tsisarzh, Y. A. Katiushyn, V. I. Zarytskyi, "Estimation of Potential Efficiency of Interperiod Processing of Coherent Batch Radio Pulses against Background of Clutter in Pulse-Doppler Radars with Medium Frequency of Probing," Radioelectron. Commun. Syst., v.61, n.12, p.529 (2018). DOI: https://doi.org/10.3103/S0735272718120014.

    Article  Google Scholar 

  17. J. Farlik, M. Kratky, J. Casar, V. Stary, "Multispectral detection of commercial unmanned aerial vehicles," Sensors, v.19, n.7, p.1517 (2019). DOI: https://doi.org/10.3390/s19071517.

    Article  Google Scholar 

  18. R. L. Sturdivant, E. K. P. Chong, "Systems Engineering Baseline Concept of a Multispectral Drone Detection Solution for Airports," IEEE Access, v.5, p.7123 (2017). DOI: https://doi.org/10.1109/ACCESS.2017.2697979.

    Article  Google Scholar 

  19. G. J. Mendis, T. Randeny, J. Wei, A. Madanayake, "Deep learning based doppler radar for micro UAS detection and classification," in MILCOM 2016 - 2016 IEEE Military Communications Conference (IEEE, Washington, 2016). DOI: https://doi.org/10.1109/MILCOM.2016.7795448.

    Chapter  Google Scholar 

  20. M. Jian, Z. Lu, V. C. Chen, "Drone detection and tracking based on phase-interferometric Doppler radar," in 2018 IEEE Radar Conference (RadarConf18) (IEEE, Washington, 2018). DOI: https://doi.org/10.1109/RADAR.2018.8378723.

    Chapter  Google Scholar 

  21. G. Galati, G. Pavan, F. De Palo, D. Latini, F. Carbone, F. Del Frate, F. Pietrobono, "Visibility trials of unmanned aerial vehicles (Drones) by commercial X-band radar in sub-urban environment," in 2017 AEIT International Annual Conference (IEEE, Washington, 2017). DOI: https://doi.org/10.23919/AEIT.2017.8240554.

    Chapter  Google Scholar 

  22. J. Ochodnicky, Z. Matousek, M. Babjak, J. Kurty, "Drone detection by Ku-band battlefield radar," in 2017 International Conference on Military Technologies (ICMT) (IEEE, Washington, 2017). DOI: https://doi.org/10.1109/MILTECHS.2017.7988830.

    Chapter  Google Scholar 

  23. W. Zhang, G. Li, "Detection of multiple micro-drones via cadence velocity diagram analysis," Electron. Lett., v.54, n.7, p.441 (2018). DOI: https://doi.org/10.1049/el.2017.4317.

    Article  Google Scholar 

  24. P. Zhang, L. Yang, G. Chen, G. Li, "Classification of drones based on micro-Doppler signatures with dual-band radar sensors," in 2017 Progress in Electromagnetics Research Symposium - Fall (PIERS - FALL) (IEEE, Washington, 2017). DOI: https://doi.org/10.1109/PIERS-FALL.2017.8293214.

    Chapter  Google Scholar 

  25. C. J. Li, H. Ling, "An Investigation on the Radar Signatures of Small Consumer Drones," IEEE Antennas Wirel. Propag. Lett., v.16, p.649 (2017). DOI: https://doi.org/10.1109/LAWP.2016.2594766.

    Article  Google Scholar 

  26. L. Fuhrmann, O. Biallawons, J. Klare, R. Panhuber, R. Klenke, J. Ender, "Micro-Doppler analysis and classification of UAVs at Ka band," in 2017 18th International Radar Symposium (IRS) (IEEE, Washington, 2017). DOI: https://doi.org/10.23919/IRS.2017.8008142.

    Chapter  Google Scholar 

  27. J. Drozdowicz, M. Wielgo, P. Samczynski, K. Kulpa, J. Krzonkalla, M. Mordzonek, M. Bryl, Z. Jakielaszek, "35 GHz FMCW drone detection system," in 2016 17th International Radar Symposium (IRS) (IEEE, Washington, 2016). DOI: https://doi.org/10.1109/IRS.2016.7497351.

    Chapter  Google Scholar 

  28. V. Semkin, J. Haarla, T. Pairon, C. Slezak, S. Rangan, V. Viikari, C. Oestges, "Analyzing Radar Cross Section Signatures of Diverse Drone Models at mmWave Frequencies," IEEE Access, v.8, p.48958 (2020). DOI: https://doi.org/10.1109/ACCESS.2020.2979339.

    Article  Google Scholar 

  29. S. Dogru, L. Marques, "Pursuing Drones With Drones Using Millimeter Wave Radar," IEEE Robot. Autom. Lett., v.5, n.3, p.4156 (2020). DOI: https://doi.org/10.1109/LRA.2020.2990605.

    Article  Google Scholar 

  30. P. Hugler, M. Geiger, C. Waldschmidt, "77 GHz radar-based altimeter for unmanned aerial vehicles," in 2018 IEEE Radio and Wireless Symposium (RWS) (IEEE, Washington, 2018). DOI: https://doi.org/10.1109/RWS.2018.8304965.

    Chapter  Google Scholar 

  31. Á. D. de Quevedo, F. I. Urzaiz, J. G. Menoyo, A. A. López, "Drone detection and radar-cross-section measurements by RAD-DAR," IET Radar, Sonar Navig., v.13, n.9, p.1437 (2019). DOI: https://doi.org/10.1049/iet-rsn.2018.5646.

    Article  Google Scholar 

  32. D. I. Lekhovytskiy, D. S. Rachkov, A. V. Semeniaka, V. P. Ryabukha, D. V. Atamanskiy, "Adaptive lattice filters. Part I. Theory of lattice structures," Appl. Radio Electron., v.10, n.4, p.380 (2011). URI: https://openarchive.nure.ua/bitstream/document/4699/1/380-404.pdf.

    Google Scholar 

  33. D. I. Lekhovytskiy, "Adaptive lattice filters for systems of space-time processing of non-stationary Gaussian processes," Radioelectron. Commun. Syst., v.61, n.11, p.477 (2018). DOI: https://doi.org/10.3103/S0735272718110018.

    Article  Google Scholar 

  34. D. I. Lekhovytskiy, V. P. Riabukha, G. A. Zhuga, V. N. Lavrent’ev, "Experimental investigations of MTD systems based on ALF in pulse radars with transverse wobbling of probing periods," Appl. Radio Electron., v.7, n.1, p.11 (2008). URI: https://openarchive.nure.ua/bitstream/document/6228/1/MRF_T1_Ch1_2008-rus-105-108.pdf.

    Google Scholar 

  35. V. P. Riabukha, A. V. Semeniaka, Y. A. Katiushyn, V. I. Zarytskyi, O. O. Holovin, "Digital adaptive system of radar protection against masking clutter on the basis of adaptive lattice filter," Weapons Mil. Equip., v.24, n.12, p.32 (2019). URI: https://journal.cndiovt.com.ua/issue/view/28.

    Google Scholar 

  36. C. E. Muehe, M. Labitt, "Displaced-phase-center antenna technique," Lincoln Lab. J., v.12, n.2, p.281 (2000). URI: https://archive.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2displaced.pdf.

    Google Scholar 

  37. V. P. Riabukha, "Adaptive radar noise jamming protection systems. 2. Quasi-Newton correlation self-compensators. Adaptive lattice filters," Appl. Radio Electron., v.15, n.2, p.88 (2016). URI: https://openarchive.nure.ua/handle/document/12114.

    Google Scholar 

  38. D. I. Lekhovitskiy, V. P. Riabukha, A. V. Semenyaka, E. A. Katyushin, V. M. Grytsenko, "Adaptive radar noise jamming protection systems. 5. Exploratory model of a jamming protection system," Appl. Radio Electron., v.16, n.3, 4, p.95 (2017). URI: https://nure.ua/wp-content/uploads/2018/Scientific_editions/are_1_2.pdf.

    Google Scholar 

  39. D. I. Lekhovytskiy, Y. S. Shifrin, "Statistical analysis of “superresolving” methods for direction-of-arrival estimation of noise radiation sources under finite size of training sample," Signal Process., v.93, n.12, p.3382 (2013). DOI: https://doi.org/10.1016/j.sigpro.2013.03.008.

    Article  Google Scholar 

  40. D. I. Lekhovytskiy, D. V. Atamanskiy, V. P. Riabukha, D. S. Rachkov, A. V. Semeniaka, "Combining target detection against the background of jamming signals and jamming signal DOA estimation," in 2015 International Conference on Antenna Theory and Techniques (ICATT) (IEEE, Washington, 2015). DOI: https://doi.org/10.1109/ICATT.2015.7136777.

    Chapter  Google Scholar 

  41. B.-K. Kim, J. Park, S.-J. Park, T.-W. Kim, D.-H. Jung, D.-H. Kim, T. Kim, S.-O. Park, "Drone Detection with Chirp-Pulse Radar Based on Target Fluctuation Models," ETRI J., v.40, n.2, p.188 (2018). DOI: https://doi.org/10.4218/etrij.2017-0090.

    Article  Google Scholar 

  42. A. Herschfelt, C. R. Birtcher, R. M. Gutierrez, Y. Rong, H. Yu, C. A. Balanis, D. W. Bliss, "Consumer-grade drone radar cross-section and micro-Doppler phenomenology," in 2017 IEEE Radar Conference (RadarConf) (IEEE, Washington, 2017). DOI: https://doi.org/10.1109/RADAR.2017.7944346.

    Chapter  Google Scholar 

  43. A. B. Blyakhman, V. N. Burov, A. V. Myakinkov, A. G. Ryndyk, "Detection of unmanned aerial vehicles via multi-static forward scattering radar with airborne transmit positions," in 2014 International Radar Conference (IEEE, Washington, 2014). DOI: https://doi.org/10.1109/RADAR.2014.7060334.

    Chapter  Google Scholar 

  44. H. D. Griffiths, N. R. W. Long, "Television-based bistatic radar," IEE Proc. F Commun. Radar Signal Process., v.133, n.7, p.649 (1986). DOI: https://doi.org/10.1049/ip-f-1.1986.0104.

    Article  Google Scholar 

  45. A. P. Kondratenko, "Role and function of unconventional radio location in the airspace control system," Zbirnyk Nauk. Pr. KhVU, n.1, p.87 (2002).

    MathSciNet  Google Scholar 

  46. A. Kondratenko, P. Kovalenko, I. Dobrinin, "Principles and variants of construction of the radio-location system with the use of radiation of mobile communication," Inf. Process. Syst., n.4, p.71 (2006). URI: http://www.hups.mil.gov.ua/periodic-app/article/5093/eng.

    Google Scholar 

  47. Y. Liu, X. Wan, H. Tang, J. Yi, Y. Cheng, X. Zhang, "Digital television based passive bistatic radar system for drone detection," in 2017 IEEE Radar Conference (RadarConf) (IEEE, Washington, 2017). DOI: https://doi.org/10.1109/RADAR.2017.7944443.

    Chapter  Google Scholar 

  48. B. Knoedler, R. Zemmari, W. Koch, "On the detection of small UAV using a GSM passive coherent location system," in 2016 17th International Radar Symposium (IRS) (IEEE, Washington, 2016). DOI: https://doi.org/10.1109/IRS.2016.7497375.

    Chapter  Google Scholar 

  49. A. D. Chadwick, "Micro-Drone Detection using Software-Defined 3G Passive Radar," in International Conference on Radar Systems (Radar 2017) (IET, 2017). DOI: https://doi.org/10.1049/cp.2017.0419.

    Chapter  Google Scholar 

  50. D. Solomitckii, M. Gapeyenko, V. Semkin, S. Andreev, Y. Koucheryavy, "Technologies for Efficient Amateur Drone Detection in 5G Millimeter-Wave Cellular Infrastructure," IEEE Commun. Mag., v.56, n.1, p.43 (2018). DOI: https://doi.org/10.1109/MCOM.2017.1700450.

    Article  Google Scholar 

  51. X. Yang, K. Huo, W. Jiang, J. Zhao, Z. Qiu, "A passive radar system for detecting UAV based on the OFDM communication signal," in 2016 Progress in Electromagnetic Research Symposium (PIERS) (IEEE, Washington, 2016). DOI: https://doi.org/10.1109/PIERS.2016.7735118.

    Chapter  Google Scholar 

  52. E. Vinogradov, D. A. Kovalev, S. Pollin, "Simulation and Detection Performance Evaluation of a UAV-mounted Passive Radar," in 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) (IEEE, Washington, 2018). DOI: https://doi.org/10.1109/PIMRC.2018.8580940.

    Chapter  Google Scholar 

  53. T. Martelli, F. Murgia, F. Colone, C. Bongioanni, P. Lombardo, "Detection and 3D localization of ultralight aircrafts and drones with a WiFi-based Passive Radar," in International Conference on Radar Systems (Radar 2017) (IET, 2017). DOI: https://doi.org/10.1049/cp.2017.0423.

    Chapter  Google Scholar 

  54. V. G. Nebabin, V. V. Sergeev, Radar Detection Methods and Technology (Radio i Svyaz’, Moscow, 1984).

    Google Scholar 

  55. A. Farina, A. Visconti, "Classification of radar targets by means of multiple hypotheses testing," in Proceedings of the International Conference Radar-87 (IEE, London and New York, 1987). URI: https://ui.adsabs.harvard.edu/abs/1987rapr.conf...73F/abstract.

    Google Scholar 

  56. A. L. Gorelik, Y. L. Barabash, O. V. Krivosheev, S. S. Epshtein, Selection and Detection Based on Radar Data (Radio i Svyaz’, Moscow, 1990).

    Google Scholar 

  57. A. L. Gorelik, V. A. Skripkin, Some Issues in Constructing Recognition System (Sov. Radio, Moscow, 1974).

    Google Scholar 

  58. J. Martin, B. Mulgrew, "Analysis of the theoretical radar return signal form aircraft propeller blades," in IEEE International Conference on Radar (IEEE, Washington, 1990). DOI: https://doi.org/10.1109/RADAR.1990.201091.

    Chapter  Google Scholar 

  59. N. E. Chamberlain, E. K. Walton, F. D. Garber, "Radar target identification of aircraft using polarization-diverse features," IEEE Trans. Aerosp. Electron. Syst., v.27, n.1, p.58 (1991). DOI: https://doi.org/10.1109/7.68148.

    Article  Google Scholar 

  60. V. M. Koshevoi, I. I. Makarova, "Synthesis and efficiency assessment of algorithms for multialternative classification of radar objects with due regard for the specified restrictions under exposure to interference," Zarubezhnoe Voen. Obozr., n.10, p.61 (1992).

    Google Scholar 

  61. Y. D. Shirman, S. A. Gorshkov, S. P. Leshchenko, G. D. Bratchenko, V. M. Orlenko, "Radar recognition methods and their simulation," Zarubezhnaya Radioelektronika, n.11, p.3 (1996).

    Google Scholar 

  62. Y. D. Shirman, Computer simulation of aerial target radar scattering recognition, detection and tracking (Artech House, Norwood, MA, 2002).

    Google Scholar 

  63. Perceptron as an Image Recognition System (Naukova Dumka, Kiev, 1975).

    Google Scholar 

  64. I. Jouny, F. D. Garber, S. C. Ahalt, "Classification of radar targets using synthetic neural networks," IEEE Trans. Aerosp. Electron. Syst., v.29, n.2, p.336 (1993). DOI: https://doi.org/10.1109/7.210072.

    Article  Google Scholar 

  65. Y. D. Shirman, S. T. Bagdasaryan, A. S. Malyarenko, D. I. Lekhovitskii, Radio Electronic Systems. Principles of Construction and Theory. Reference Book (Radiotekhnika, Moscow, 2007).

    Google Scholar 

  66. A. L. Gorelik, V. A. Skripkin, Recognition Techniques. Textbook (Radio i Svyaz’, Moscow, 1984).

    Google Scholar 

  67. Y. D. Shirman, S. A. Gorshkov, S. P. Leshchenko, G. D. Bratchenko, Radar Recognition. Textbook on Theoretical Basics of Radiolocation Course (Kharkov Military University, Kharkov, 1994).

    Google Scholar 

  68. X. Bai, M. Xing, F. Zhou, G. Lu, Z. Bao, "Imaging of Micromotion Targets With Rotating Parts Based on Empirical-Mode Decomposition," IEEE Trans. Geosci. Remote Sens., v.46, n.11, p.3514 (2008). DOI: https://doi.org/10.1109/TGRS.2008.2002322.

    Article  Google Scholar 

  69. F. Su, M. Jiu, "ISAR Imaging of Target with Micro-motion Parts Based on SSA," in 8th European Conference on Synthetic Aperture Radar (IEEE, Washington, 2010). URI: https://ieeexplore.ieee.org/document/5757441.

    Google Scholar 

  70. V. C. Chen, F. Li, S.-S. Ho, H. Wechsler, "Micro-doppler effect in radar: phenomenon, model, and simulation study," IEEE Trans. Aerosp. Electron. Syst., v.42, n.1, p.2 (2006). DOI: https://doi.org/10.1109/TAES.2006.1603402.

    Article  Google Scholar 

  71. A. Solodov, A. Williams, S. Al Hanaei, B. Goddard, "Analyzing the threat of unmanned aerial vehicles (UAV) to nuclear facilities," Secur. J., v.31, n.1, p.305 (2018). DOI: https://doi.org/10.1057/s41284-017-0102-5.

    Article  Google Scholar 

  72. X. Li, B. Deng, Y. Qin, H. Wang, Y. Li, "The Influence of Target Micromotion on SAR and GMTI," IEEE Trans. Geosci. Remote Sens., v.49, n.7, p.2738 (2011). DOI: https://doi.org/10.1109/TGRS.2011.2104965.

    Article  Google Scholar 

  73. C. Clemente, J. J. Soraghan, "Vibrating Micro-Doppler signature extraction from SAR data using Singular Value Decomposition," in Proc. 9th European Conference on Synthetic Aperture Radar EUSAR 2012 (VDE, Nuremberg, 2012). URI: https://ieeexplore.ieee.org/document/6217013.

    Google Scholar 

  74. V. C. Chen, W. J. Miceli, B. Himed, "Micro-Doppler analysis in ISAR - review and perspectives," in Proc. of 2009 International Radar Conference “Surveillance for a Safer World” (RADAR 2009) (IEEE, Washington, 2009). URI: https://ieeexplore.ieee.org/document/5438505.

    Google Scholar 

  75. B. Li, J. Wan, K. Yao, Y. Wang, L. Ci, J. Lu, "ISAR based on micro-doppler analysis and Chirplet parameter separation," in 2007 1st Asian and Pacific Conference on Synthetic Aperture Radar (IEEE, Washington, 2007). DOI: https://doi.org/10.1109/APSAR.2007.4418631.

    Chapter  Google Scholar 

  76. C. Clemente, J. J. Soraghan, "Vibrating Target Micro-Doppler Signature in Bistatic SAR With a Fixed Receiver," IEEE Trans. Geosci. Remote Sens., v.50, n.8, p.3219 (2012). DOI: https://doi.org/10.1109/TGRS.2011.2180394.

    Article  Google Scholar 

  77. B. Torvik, K. E. Olsen, H. Griffiths, "Classification of Birds and UAVs Based on Radar Polarimetry," IEEE Geosci. Remote Sens. Lett., v.13, n.9, p.1305 (2016). DOI: https://doi.org/10.1109/LGRS.2016.2582538.

    Article  Google Scholar 

  78. B. K. Kim, H.-S. Kang, S.-O. Park, "Experimental Analysis of Small Drone Polarimetry Based on Micro-Doppler Signature," IEEE Geosci. Remote Sens. Lett., v.14, n.10, p.1670 (2017). DOI: https://doi.org/10.1109/LGRS.2017.2727824.

    Article  Google Scholar 

  79. M. Ritchie, F. Fioranelli, H. Griffiths, B. Torvik, "Micro-drone RCS analysis," in 2015 IEEE Radar Conference (IEEE, Washington, 2015). DOI: https://doi.org/10.1109/RadarConf.2015.7411926.

    Chapter  Google Scholar 

  80. A. V. Khristenko, M. O. Konovalenko, M. E. Rovkin, V. A. Khlusov, A. V. Marchenko, A. A. Sutulin, N. D. Malyutin, "Magnitude and Spectrum of Electromagnetic Wave Scattered by Small Quadcopter in X-Band," IEEE Trans. Antennas Propag., v.66, n.4, p.1977 (2018). DOI: https://doi.org/10.1109/TAP.2018.2800640.

    Article  Google Scholar 

  81. M. Ritchie, F. Fioranelli, H. Borrion, H. Griffiths, "Multistatic micro-Doppler radar feature extraction for classification of unloaded/loaded micro-drones," IET Radar, Sonar Navig., v.11, n.1, p.116 (2017). DOI: https://doi.org/10.1049/iet-rsn.2016.0063.

    Article  Google Scholar 

  82. X. Guo, C. S. Ng, E. de Jong, A. B. Smits, "Micro-Doppler Based Mini-UAV Detection with Low-Cost Distributed Radar in Dense Urban Environment," in Proc. of 2019 16th European Radar Conference (EuRAD) (IEEE, Washington, 2019). URI: https://ieeexplore.ieee.org/document/8904760.

    Google Scholar 

  83. M. Ritchie, F. Fioranelli, H. Borrion, H. Griffiths, "Classification of loaded/unloaded micro-drones using multistatic radar," Electron. Lett., v.51, n.22, p.1813 (2015). DOI: https://doi.org/10.1049/el.2015.3038.

    Article  Google Scholar 

  84. D. A. Brooks, O. Schwander, F. Barbaresco, J.-Y. Schneider, M. Cord, "Temporal Deep Learning for Drone Micro-Doppler Classification," in 2018 19th International Radar Symposium (IRS) (IEEE, Washington, 2018). DOI: https://doi.org/10.23919/IRS.2018.8447963.

    Chapter  Google Scholar 

  85. S. Bjorklund, "Target Detection and Classification of Small Drones by Boosting on Radar Micro-Doppler," in 2018 15th European Radar Conference (EuRAD) (IEEE, Washington, 2018). DOI: https://doi.org/10.23919/EuRAD.2018.8546569.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Riabukha.

Ethics declarations

ADDITIONAL INFORMATION

V. P. Riabukha

The author declares that he has no conflict of interest.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347020110011 with DOI: https://doi.org/10.20535/S0021347020110011

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riabukha, V.P. Radar Surveillance of Unmanned Aerial Vehicles (Review). Radioelectron.Commun.Syst. 63, 561–573 (2020). https://doi.org/10.3103/S0735272720110011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272720110011

Navigation