Skip to main content
Log in

Excitation of Short Electric Monopulse in Nitride Films with Negative Differential Conductivity

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

The excitation of short electric monopulses of space charge waves with wide frequency spectrum of terahertz range in nitride films has been theoretically investigated. The excitation of these pulses with duration ≤ 5 ps and high peak values of electric fields is possible in n-GaN or n-InN films of submicron thickness in the presence of negative differential conductivity. The simulation of nonlinear dynamics of pulses was performed with due regard for the nonlocal dependence of the drift electron velocity on the average electron energy. Optimal values of the applied constant electric fields and equilibrium electron concentration for excitation of monopulses are specified. The monopulse dynamics is weakly dependent on the film width and also on the value and waveform of input excitation pulses. Short electric monopulses differ from domains of strong electric field in Gunn diodes built on bulk crystals with negative differential conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yun-Shik Lee, Principles of Terahertz Science and Technology (Springer, N.Y., 2009). DOI: 10.1007/978-0-387-09540-0.

    Google Scholar 

  2. M. Perenzoni, D. J. Paul, (eds.). Physics and Applications of Terahertz Radiation (Springer, N.Y., 2014). DOI: 10.1007/978-94-007-3837-9.

    Google Scholar 

  3. Ho-Jin Song, Tadao Nagatsuma (eds.). Handbook of Terahertz Technologies: Devices and Applications (Boca Raton, CRC Press, 2015). URI: https://www.crcpress.com/Handbook-of-Terahertz-Technologies-Devices-and-Applications/Song-Nagatsuma/p/book/9789814613088.

    Google Scholar 

  4. G. Carpintero, L. E. Garcia Munoz, H. L. Hartnagel, S. Preu, A. V. Räisänen eds.). Semiconductor Terahertz Technology: Devices and Systems at Room Temperature Operation (John Wiley & Sons, N.Y., 2015). DOI: 10.1002/9781118920411.

    Google Scholar 

  5. Y. Nakasha, “Foreword,” IEICE Trans. Electronics E98.C, No. 12 (2015). DOI: 10.1587/transele.E98.C.1058.

    Google Scholar 

  6. V. L. Vaks, V. V. Biryukov, K. I. Kisilenko, A. N. Panin, S. I. Pripolzin, A. S. Raevskiy, V. V. Scherbakov, “Wireless communication systems of terahertz frequency range,” Zhurnal Radioelektroniki, No. 12, 1 (2018). DOI: 10.30898/1684-1719.2018.12.4.

    Google Scholar 

  7. K. A. Lukin, P. P. Maksymov, “Terahertz self-induced oscillations in the injection p–n junction with fixed reverse bias,” Radioelectron. Commun. Syst. 53, No. 8, 405 (2010). DOI: 10.3103/S0735272710080029.

    Article  Google Scholar 

  8. S. J. Pearton, J. C. Zolper, R. J. Shul, F. Ren, “GaN: processing, defects, and devices,” J. Appl. Phys. 86, No. 1, 1 (1999). DOI: 10.1063/1.371145.

    Article  Google Scholar 

  9. S. C. Jain, M. Willander, J. Narayan, R. Van Overstraeten, “III-nitrides: Growth, characterization, and properties,” J. Appl. Phys. 87, No. 3, 965 (2000). DOI: 10.1063/1.371971.

    Article  Google Scholar 

  10. V. Gruzhinskis, P. Shiktorov, E. Starikov, J. H. Zhao, “Comparative study of 200–300 GHz microwave power generation in GaN TEDs by the Monte Carlo technique,” Semicond. Sci. Technol. 16, No. 8, 798 (2001). DOI: 10.1088/0268-1242/16/9/311.

    Article  Google Scholar 

  11. J. T. Lü, J. C. Cao, “Terahertz generation and chaotic dynamics in GaN NDR diode,” Semicond. Sci. Technol. 19, No. 4, 451 (2004). DOI: 10.1088/0268-1242/19/3/028.

    Article  Google Scholar 

  12. V. I. Timofeyev, E. V. Semenovskaya, O. M. Falieieva, “Electrothermal analysis of GaN power submicron field-effect heterotransistors,” Radioelectron. Commun. Syst. 59, No. 2, 66 (2016). DOI: 10.3103/S0735272716020035.

    Article  Google Scholar 

  13. V. N. Sheremet, “Formation peculiarities and properties of ohmic contacts to n-GaN(AlN) and artificial diamond,” Radioelectron. Commun. Syst. 56, No. 10, 493 (2013). DOI: 10.3103/S073527271310004X.

    Article  Google Scholar 

  14. A. A. Kokolov, L. I. Babak, “Methodology of built and verification of non-linear EEHEMT model for GaN HEMT transistor,” Radioelectron. Commun. Syst. 58, No. 10, 435 (2015). DOI: 10.3103/S0735272715100015.

    Article  Google Scholar 

  15. M. Levinshtein, S. Rumyantsev, M. Shur, “Properties of advanced semiconductor materials: GaN, AlN, InN,” (Wiley, N.Y., 2001). URI: http://www.ioffe.ru/SVA/NSM/Semicond/GaN/.

    Google Scholar 

  16. V. Grimalsky, S. Koshevaya, I. Moroz, A. Garcia-B., “Influence of nonlocality on amplification of space charge waves in n-GaN films,” Proc. of Int. Symp. on Phys. and Engineering of Microwaves, Millimeter and Submillimeter Waves, 21–26 June 2010, Kharkov, Ukraine (IEEE, 2010), pp. 1–4. DOI: 10.1109/msmw.2010.5546135.

    Google Scholar 

  17. V. Grimalsky, S. Koshevaya, M. Tecpoyotl-T., F. Diaz-A., “Influence of nonlocality on amplification of space charge waves in n-GaN films,” J. Electromagn. Analysis Appl. 3, No. 2, 33 (2011). DOI: 10.4236/jemaa.2011.32006.

    Google Scholar 

  18. E. J. Foltides, V. Grimalsky, S. Koshevaya, J. Escobedo-Alatorre, “Amplification of space charge waves in n-InN films of THz range,” Proc. of IEEE MTT-S Latin America Microwave Conf., LAMC-2016, 12–14 Dec. 2016, Puerto Vallarta, Mexico (IEEE, 2016), pp. 1–3. DOI: 10.1109/lamc.2016.7851269.

    Google Scholar 

  19. W. A. Hadi, P. K. Guram, M. S. Shur, S. K. O’Leary, “Steady-state and transient electron transport within wurtzite and zinc-blende indium nitride,” J. Appl. Phys. 113, No. 11, paper 113709 (2013). DOI: 10.1063/1.4795146.

    Article  Google Scholar 

  20. P. Siddiqua, W. A. Hadi, A. K. Salhotra, M. S. Shur, S. K. O’Leary, “Electron transport and electron energy distributions within the wurtzite and zinc-blende phases of indium nitride: Response to the application of a constant and uniform electric field,” J. Appl. Phys. 117, No. 12, Paper 125705 (2015). DOI: 10.1063/1.4 915329.

    Article  Google Scholar 

  21. S. M. Sze, Kwok N. Ng, Physics of Semiconductor Devices (Wiley-Interscience, Hobokem NJ, 2007). DOI: 10.1002/0470068329.

    Google Scholar 

  22. A. Garcia-B., V. Grimalsky, E. Gutierrez-D., S. Koshevaya, “Dispersion relation for two-valley quasi-hydrodynamic models in SCWs propagation in n-GaAs thin films,” Proc. of 25th Int. Conf. on Microelectronics, 14–17 May 2006, Belgrade, Serbia (IEEE, 2006), pp. 507–510. DOI: 10.1109/icmel.2006.1651013.

    Google Scholar 

  23. K. Tomizawa, Numerical Simulation of Submicron Semiconductor Devices (Artech House Pub., Boston, 1993).

    Google Scholar 

  24. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in Fortran (CUP, Cambridge, 1997).

    MATH  Google Scholar 

  25. V. Grimalsky, S. Koshevaya, M. Tecpoyotl-T., J. Escobedo-A. “Nonlinear interaction of terahertz and optical waves in nitride films,” Int. J. Terahertz Sci. Technol. 6, No. 3, 165 (2013). DOI: 10.11906/TST.165-176.2013.09.10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Grimalsky.

Additional information

The authors express their gratitude to SEP-CONACyT, Mexico for support of this study.

Russian Text © The Author(s), 2019, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Radioelektronika, 2019, Vol. 62, No. 6, pp. 324–334.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional Information

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347019060025 with DOI: 10.20535/S0021347019060025.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koshevaya, S.V., Grimalsky, V.V., Escobedo-Alatorre, J. et al. Excitation of Short Electric Monopulse in Nitride Films with Negative Differential Conductivity. Radioelectron.Commun.Syst. 62, 262–270 (2019). https://doi.org/10.3103/S0735272719060025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272719060025

Navigation