Skip to main content
Log in

QWIP focal plane array theoretical model of 3-D imaging LADAR system

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

The aim of this research is to develop a model for the direct detection three-dimensional (3-D) imaging LADAR system using Quantum Well Infrared Photodetector (QWIP) Focal Plane Array (FPA). This model is employed to study how to add 3-D imaging capability to the existing conventional thermal imaging systems of the same basic form which is sensitive to 3–5 µm(mid-wavelength infrared, MWIR) or 8–12 µm (long-wavelength infrared, LWIR) spectral bands. The integrated signal photoelectrons in case of short integration time is required to transmit laser pulses with higher energy in order to obtain photoelectrons nearest those values obtained from the background photoelectrons in thermal imaging system with the longer interval of time. Since the operating conditions of the proposed system are of low levels for speckle diversity and high levels of signal photoelectrons, it was shown that the signal obeys the Gaussian probability density function. The evaluation of system performance of the proposed model shows that it needs a detector with low dark current and high transmitted energy to obtain satisfactory parameter values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, C. J. Hill, S. B. Rafol, D. Salazar, J. Woolaway, P. D. LeVan, M. Z. Tidrow, “Towards dualband megapixel QWIP focal plane arrays,” Infrared Physics & Technology 50, No. 2–3, 217 (2007), DOI: 10.1016/j.infrared.2006.10.005.

    Article  Google Scholar 

  2. Arnold C. Goldberg, Theodore Fischer, Stephen W. Kennerly, Samuel C. H. Wang, Mani Sundaram, Parvez N. Uppal, Michael L. Winn, Gregory L. Milne, Mark A. Stevens, “Dual-band QWIP MWIR/LWIR focal plane array test results,” Proc. SPIE 4028, 276 (2000), DOI: 10.1117/12.391740.

    Article  Google Scholar 

  3. Wei Lu, Li Ling, Honglou Zheng, Wenlan Xu, DaYuan Xiong, “Development of an infrared detector: Quantum well infrared photodetector,” Science in China Series G: Physics, Mechanics and Astronomy 52, No. 7, 969 (Jul. 2009), DOI: 10.1007/s11433-009-0131-0.

    Article  Google Scholar 

  4. H. C. Liu, R. Dudek, A. Shen, E. Dupont, C. Y. Song, Z. R. Wasilewski, M. Buchanan, “High absorption (>90%) quantum-well infrared photodetectors,” Appl. Phys. Lett. 79, No. 25, 4237 (2001), DOI: 10.1063/1.1425066.

    Article  Google Scholar 

  5. Marius A. Albota, Richard M. Heinrichs, David G. Kocher, Daniel G. Fouche, Brian E. Player, Michael E. O’Brien, Brian F. Aull, John J. Zayhowski, James Mooney, Berton C. Willard, Robert R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Optics 41, No. 36, 7671 (2002), DOI: 10.1364/AO.41.007671.

    Article  Google Scholar 

  6. Jeff Beck, Milton Woodall, Richard Scritchfield, Martha Ohlson, Lewis Wood, Pradip Mitra, Jim Robinson, “Gated IR imaging with 128x128 HgCdTe electron avalanche photodiode FPA,” Proc. SPIE 6542, 654217 (2007), DOI: 10.1117/12.719358.

    Article  Google Scholar 

  7. C. Kumar N. Patel, “From CO2 lasers to quantum cascade lasers—A saga of high power infrared lasers,” J. Laser Appl. 21, No. 4, 224 (2009), DOI: 10.2351/1.3263623.

    Article  Google Scholar 

  8. Manijeh Razeghi, Steven Slivken, Yanbo Bai, Burc Gokden, Shaban Ramezani Darvish, “High power quantum cascade lasers,” New J. Phys. 11, No. 12, 125017 (2009), DOI: 10.1088/1367-2630/11/12/125017.

    Article  Google Scholar 

  9. Richard Maulini, Arkadiy Lyakh, Alexei Tsekoun, Rowel Go, Christian Pflügl, Laurent Diehl, Federico Capasso, C. Kumar N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95, No. 15, 151112 (2009), DOI: 10.1063/1.3246799.

    Article  Google Scholar 

  10. Jae Su Yu, Steven Slivken, Allan J. Evans, Manijeh Razeghi, “High-performance continuous-wave operation of ~4.6 μm quantum-cascade lasers above room temperature,” IEEE J. Quantum Electron. 44, No. 8, 747 (Aug. 2008), DOI: 10.1109/JQE.2008.924434.

    Article  Google Scholar 

  11. Benjamin G. Lee, Haifei A. Zhang, Christian Pflügl, Laurent Diehl, Mikhail A. Belkin, Milan Fischer, Andreas Wittmann, Jerome Faist, Federico Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 m,” IEEE Photonics Technol. Lett. 21, No. 13, 914 (Jul. 2009), DOI: 10.1109/LPT. 2009.2020440.

    Article  Google Scholar 

  12. V. D. Shadrin, V. V. Mitin, V. A. Kochelapb, K. K. Choi, “Photoconductive gain and generation-recombination noise in quantum well infrared photodetectors,” J. Appl. Phys. 77, No. 4, 1771 (1995), DOI: 10.1063/1.358873.

    Article  Google Scholar 

  13. N. Snapi, Y. Paltiel, A. Zussman, G. Jung, A. Ben Simon, “Non-Gaussian noise in quantum wells infrared photodetectors,” Infrared Physics & Technology 50, No. 2–3, 100 (Apr. 2007), DOI: 10.1016/j.infrared.2006. 10.012.

    Article  Google Scholar 

  14. N. E. I. Etteh, Paul Harrison, “Carrier scattering approach to the origins of dark current in mid and far-infrared (terahertz) quantum-well intersubband photodetectors (QWIPs),” IEEE J. Quantum Electron. 37, No. 5, 672 (May 2001), DOI: 10.1109/3.918580.

    Article  Google Scholar 

  15. N. E. I. Etteh, P. Harrison, “Quantum mechanical scattering investigation of the thermionic and field induced emission components of the dark current in quantum well infrared photodetectors,” J. Appl. Phys. 92, No. 1, 248 (2002), DOI: 10.1063/1.1481214.

    Article  Google Scholar 

  16. Shahram Mohammad Nejad, M. Pourmahyabadi, A. Amidian, “Optimal dark current reduction in quantum well 9 µm GaAs/AlGaAs infrared photodetectors with improved detectivity,” Proc. of 13th IEEE Int. Conf. on Electronics, Circuits and Systems, ICECS, 10–13 Dec. 2006, Nice (IEEE, 2006), pp. 918–921, DOI: 10.1109/ICECS.2006.379939.

    Google Scholar 

  17. G. Stephen Mecherle, “Signal speckle effects on optical detection with additive Gaussian noise,” JOSA A 1, No. 1, 68 (1984), DOI: 10.1364/JOSAA.1.000068.

    Article  Google Scholar 

  18. Douglas G. Youmans, “Avalanche photodiode detection statistics for direct detection laser radar,” Proc. SPIE 1633, 41 (1992), DOI: 10.1117/12.59115.

    Article  Google Scholar 

  19. H. T. Yura, “LADAR detection statistics in the presence of pointing errors,” Appl. Optics 33, No. 27, 6482 (1994), DOI: 10.1364/AO.33.006482.

    Article  Google Scholar 

  20. Markus Henriksson, “Detection probabilities for photon-counting avalanche photodiodes applied to a laser radar system,” Appl. Optics 44, No. 24, 5140 (2005), DOI: 10.1364/AO.44.005140.

    Article  Google Scholar 

  21. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).

    Google Scholar 

  22. Gregory R. Osche, Optical Detection Theory for Laser Applications (Wiley, New Jersy, 2002).

    Google Scholar 

  23. Alan Jeffrey, Daniel Zwillinger, Table of Integrals, Series, and Products, 7th ed. (Academic Press, 2007).

    Google Scholar 

  24. Sanjay Krishna, Oh-Hyun Kwon, Majeed M. Hayat, “Theoretical investigation of quantum-dot avalanche photodiodes for mid-infrared applications,” IEEE J. Quantum Electron. 41, No. 12, 1468 (Dec. 2005), DOI: 10.1109/JQE.2005.858791.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed B. El Mashade.

Additional information

Original Russian Text © M. B. El Mashade, A.E. AbouElez, 2016, published in Izv. Vyssh. Uchebn. Zaved., Radioelektron., 2016, Vol. 59, No. 5, pp. 3–19.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Mashade, M.B., AbouElez, A.E. QWIP focal plane array theoretical model of 3-D imaging LADAR system. Radioelectron.Commun.Syst. 59, 195–206 (2016). https://doi.org/10.3103/S0735272716050010

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272716050010

Navigation