Skip to main content
Log in

Role of Humic Acids in the Detoxification of Petroleum Hydrocarbons in Soil

  • Published:
Solid Fuel Chemistry Aims and scope Submit manuscript

Abstract

The influence of the concentration and composition of humic acids (HAs) on the biodegradation of petroleum hydrocarbons was investigated. The HAs were obtained from oxidized brown coal by alkaline extraction upon the mechanical treatment of coal in the presence of 3 and 8 wt % NaOH (HA1 and HA2, respectively). It was found that solid-phase alkaline hydrolysis in the presence of 8 wt % NaOH with the subsequent separation of HA2 with water led to an increase in the degree of aromaticity and the number of phenolic groups. The soil microflora stimulated by HA1 and HA2 had an increased destructive oil-oxidizing activity. A decrease in the concentration of phenanthrene in solution due to the formation of a complex upon interaction with humic acids was established by spectrophotometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Grechishcheva, N.Yu., Perminova, I.V., and Me-shcheryakov, S.V., Ekol. Prom–st' Rossii, 2016, vol. 20, no. 1, p. 30. https://doi.org/10.18412/1816-0395-2016-1-30-36

    Article  Google Scholar 

  2. Filatov, D.A., Krivtsov, E.B., Sviridenko, N.N., Golovko, A.K., and Altunina, L.K., Neftekhimiya, 2017, vol. 57, no. 8, p. 386. https://doi.org/10.7868/S0028242117040050

    Article  Google Scholar 

  3. Prince, R.C., Hedgpeth, B.M., Redman, A.D., and Butler, J.D., Open J. Marine Sci., 2019, vol. 9, no. 3, p. 113.

    Google Scholar 

  4. Ivanov, A.A., Yudina, N.V., Mal’tseva, E.V., Matis, E.Ya., and Svarovskaya, L.I., Eurasian Soil Sci., 2010, vol. 43, no. 2, p. 210. https://doi.org/10.1134/S1064229310020110

    Article  Google Scholar 

  5. Prince, R.C., Hedgpeth, B.M., Redman, A.D., and Butler, J.D., Open J. Marine Sci., 2019, vol. 9, no. 3, p. 113.

    Google Scholar 

  6. Pineda-Flores, G., Boll-Arguello, G., Lira-Galeana, C., and Mesta-Howard, A.M., Biodegradation, 2004, vol. 15, no. 3, p. 145. https://doi.org/10.4236/ojms.2019.93009

    Article  CAS  PubMed  Google Scholar 

  7. Chikere, C.B., Okpokwasili, G.C., and Chikere, B.O., Afr. J. Biotechnol., 2009, vol. 8, no. 11, p. 2535.

    CAS  Google Scholar 

  8. Sutton, R., Environ. Sci. Technol., 2005, vol. 39, no. 23, p. 9009. https://doi.org/10.1021/es050778q

    Article  CAS  PubMed  Google Scholar 

  9. Liang, Y-N., Britt, D.W., and McLean, J.E., Appl. Microbiol. Biotechnol., 2007, vol. 74, no. 6, p. 1368.

    Article  CAS  Google Scholar 

  10. Smith, K.E., Thullner, M., Wick, L.Y., and Harms, L.Y., Environ. Sci. Technol., 2009, vol. 43, no. 19, p. 7205. doi org/https://doi.org/10.1021/es803661s

  11. Yudina, N.V., Mal’tseva, E.V., Chaikovskaya, O.N., and Nechaev, L.V., Russ. J. Phys. Chem. A, 2011, vol. 85, no. 9, p. 1558. https://doi.org/10.1134/S0036024411090147

    Article  CAS  Google Scholar 

  12. Aniefiok, E., Hanney, N.F., and Semple, K.T., Int. J. Environ. Bioremed. Biodegrad., 2015, vol. 3, no. 2, p. 40. https://doi.org/10.12691/ijebb-3-2-1

    Article  CAS  Google Scholar 

  13. Shirshin, E.A., Budylin, N.Yu., Fadeev, V.V., and Perminova, I.V., Photochem. Photobiol. Sci., 2016, vol. 15, p. 842. https://doi.org/10.1039/c6pp00052e

    Article  Google Scholar 

  14. Tchaikovskaya, O.N., Yudina, N.V., Mal’tseva, E.V., and Sokolova, I.V., Luminescence, 2005, no. 20, p. 187. https://doi.org/10.1002/bio.818

  15. Skripkina, T.S., Bychkov, A.L., Tikhova, V.D., and Lomovskii, O.I., Solid Fuel Chem., 2018, vol. 52, no. 6, p. 356. https://doi.org/10.3103/S0361521918060101

    Article  CAS  Google Scholar 

  16. Skripkina, T.S., Bychkov, A.L., Tikhova, V.D., Smolyakov, B.S., and Lomovsky, O.I., Environ. Technol. Innovation, 2018, vol. 11, p. 74. https://doi.org/10.1016/j.eti.2018.04.010

    Article  Google Scholar 

  17. Zherebtsov, S.I., Votolin, K.S., Malyshenko, N.V., Smotrina, O.V., Dugarzhan, Zh., and Ismagilov, Z.R., Solid Fuel Chem., 2019, vol. 53, no. 5, p. 253. https://doi.org/10.3103/S0361521919050124

    Article  CAS  Google Scholar 

  18. Tchaikovskaya, O.N., Yudina, N.V., Nechaev, L.V., and Mal’tseva, E.V, Luminescence, 2016, vol. 31, no. 5, p. 1098. https://doi.org/10.1002/bio.3077

    Article  CAS  PubMed  Google Scholar 

  19. Savel'eva, A.V., Mal’tseva, E.V., Yudina, N.V., and Lomovskii, O.I., Khim. Interesakh Ustoich. Razvit., 2016, vol. 24, no. 2, p. 263. https://doi.org/10.15372/KhUR20160221

    Article  CAS  Google Scholar 

  20. Urazova, T.S., Bychkov, A.L., and Lomovskii, O.I., Russ. J. Appl. Chem., 2014, vol. 87, no. 5, p. 651. https://doi.org/10.1007/s11172-015-0997-0

    Article  CAS  Google Scholar 

  21. Yudina, N.V., Savel’eva, A.V., and Linkevich, E.V., Solid Fuel Chem., 2019, vol. 53, no. 1, p. 29. https://doi.org/10.3103/S0361521919010099]

    Article  CAS  Google Scholar 

  22. Yudina, N.V., Savel’eva, A.V., Ivanov, A.A., Korotkova, E.I., and Lomovskii, O.I., Russ. J. Appl. Chem., 2004, vol. 77, no. 1, p. 46. https://doi.org/10.1023/B:RJAC.0000024574.01023.fe

    Article  CAS  Google Scholar 

  23. Klein, O.I., Kulikova, N.A., Filimonov, I.S., Koro-leva, O.V., and Konstantinov, A.I., Soils Sediments, 2018, no. 4, p. 1355. https://doi.org/10.1007/s11368-016-1507-1

  24. Yudina N.V., Savel’eva, A.V., and Lomovskii, O.I., Khim. Interesakh Ustoich. Razvit., 2019, no. 4, p. 637. https://doi.org/10.15372/KhUR2019156

  25. Antipenko, V.R., Bakanova, O.S., and Filatov, D.A., Neftekhimiya, 2019, vol. 50, no. 5, p. 508. .https://doi.org/10.1134/S0028242119050022

    Article  Google Scholar 

Download references

Funding

This work was carried out within the framework of a state contract at the Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences (project no. 1210315000498).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Linkevich, N. V. Yudina or A. V. Savel’eva.

Additional information

Translated by V. Makhlyarchuk

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linkevich, E.V., Yudina, N.V. & Savel’eva, A.V. Role of Humic Acids in the Detoxification of Petroleum Hydrocarbons in Soil. Solid Fuel Chem. 55, 332–337 (2021). https://doi.org/10.3103/S0361521921050049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0361521921050049

Keywords:

Navigation