Skip to main content
Log in

Hydrochar Production through the HTC Process: Case Study of Municipal Solid Waste Samples in East Java, Indonesia

  • Published:
Solid Fuel Chemistry Aims and scope Submit manuscript

Abstract

Municipal solid waste (MSW) disposal is one of the main issues towards sustainable development. Various technologies are studied to solve it. Hydrothermal carbonization (HTC) is an appropriate technology selection to reduce the waste volume primarily and to utilize MSW as the energy source because of its high the calorific value inside. This paper describes the potential of hydrochar production of raw materials in the provinces of East Java, Indonesia. The hydrochar production can be used as a secondary char and for electrical generation if it is combined with gasification process. The waste material affected the quality of combustion and calorific value to the product. The proximate and ultimate analysis using ASTM methods was conducted to analyze the characteristics of hydrochar. The influences of the HTC temperatures at saturated pressure (220°C, 23 bar) and variations of the feedstock moisture content (20–60%) were studied using a simulation of HTC process. The average calorific value of hydrochar is increased 32% of waste materials, 70% hydrochar yield, and 84% energy efficiency. This value indicates that the HTC process can produce hydrochar, moreover it reduced the mass of waste materials, also increased the energy content of products and the energy efficiency is a potential of energy generation from waste materials in an area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Mayer, F., Bhandari, R., and Gath, S., Sci. Total Environ., 2019, vol. 672, p. 708. https://doi.org/10.1016/j.scitotenv.2019.03.449

    Article  CAS  PubMed  Google Scholar 

  2. Násner, A.M.L., Lora, E.E.S., Palacio, J.C.E., Rocha, M.H., Restrepo, J.C., Venturini, O.J., and Ratner, A., Waste Manag., 2017, vol. 69, p. 187. https://doi.org/10.1016/j.wasman.2017.08.006

    Article  CAS  PubMed  Google Scholar 

  3. Effat, H.A. and Hegazy, M.N., Egypt. J. Remote Sens. Sp. Sci., 2012, vol. 15, no. 2, p. 125. https://doi.org/10.1016/j.ejrs.2012.09.002

    Article  Google Scholar 

  4. Zheng, X., Chen, W., Ying, Z., Huang, J., Ji, S., and Wang, B., Int. J. Hydrogen Energy, 2019, vol. 44, no. 21, p. 10374. https://doi.org/10.1016/j.ijhydene.2019.02.200

    Article  CAS  Google Scholar 

  5. Gai, C., Chen, M., Liu, T., Peng, N., and Liu, Z., Energy, 2016, vol. 113, p. 957. https://doi.org/10.1016/j.energy.2016.07.129

    Article  CAS  Google Scholar 

  6. Gai, C., Guo, Y., Liu, T., Peng, N., and Liu, Z., Int. J. Hydrogen Energy, 2016, vol. 41, no. 5, p. 3363. https://doi.org/10.1016/j.ijhydene.2015.12.188

    Article  CAS  Google Scholar 

  7. Kamble, A.D., Saxena, V.K., Chavan, P.D., and Mendhe, V.A., Int. J. Min. Sci. Technol., 2019, vol. 29, no. 2, p. 171. https://doi.org/10.1016/j.ijmst.2018.03.011

    Article  CAS  Google Scholar 

  8. Krysanova, K., Krylova, A., and Zaichenko, V., Fuel, 2019, vol. 256, p. 115929. https://doi.org/10.1016/j.fuel.2019.115929

    Article  CAS  Google Scholar 

  9. Zheng, C., Ma, X., Yao, Z., and Chen, X., Biores. Technol., 2019, vol. 285, p. 121347. https://doi.org/10.1016/j.biortech.2019.121347

    Article  CAS  Google Scholar 

  10. Lee, J., Sohn, D., Lee, K., and Park, K.Y., Chemosphere, 2019, vol. 230, p. 157. https://doi.org/10.1016/j.chemosphere.2019.05.066

    Article  CAS  PubMed  Google Scholar 

  11. Liu, T., Lang, Q., Xia, Y., Chen, Z., Li, D., Ma, J., Gai, C., and Liu, Z., Fuel, 2019. https://doi.org/10.1016/j.fuel.2019.01.035

  12. Zheng, C., Ma, X., Yao, Z., and Chen, X., Biores., Technol., 2019. https://doi.org/10.1016/j.biortech.2019.121347

  13. McGaughy, K. and Toufiq, Reza M., Biomass Convers. Biorefinery, 2018, vol. 8, no. 2, p. 283. https://doi.org/10.1007/s13399-017-0276-4

    Article  CAS  Google Scholar 

  14. Khan, T.A., Saud, A.S., Jamari, S.S., Rahim, M.H.A., Park, J.-W., and Kim, H.-J., Biomass Bioenergy, 2019. https://doi.org/10.1016/j.biombioe.2019.105384

  15. Heidari, M., Dutta, A., Acharya, B., and Mahmud, S., J. Energy Inst., 2018, p. 1. https://doi.org/10.1016/j.joei.2018.12.003

  16. Liu, Z. and Balasubramanian, R., Appl. Energy, 2014, vol. 114, p. 857. https://doi.org/10.1016/j.apenergy.2013.06.027

    Article  CAS  Google Scholar 

  17. Erlach, B., Harder, B., and Tsatsaronis, G., Proc. 24th Int. Conf. Effic. Cost, Optim. Simul. Environ. Impact Energy Syst. ECOS 2011, 2011, vol. 45, no. 1, p. 3642. https://doi.org/10.1016/j.energy.2012.01.057

  18. Boumanchar, I., Chhiti, Y., M’hamdi, Alaoui F.E., El Ouinani, A., Sahibed-Dine, A., Bentiss, F., Jama, C., and Bensitel, M., Waste Manag., 2017, vol. 61, p. 78. https://doi.org/10.1016/j.wasman.2016.11.012

    Article  CAS  PubMed  Google Scholar 

  19. Gao, L., Volpe, M., Lucian, M., Fiori, L., and Goldfarb, J.L., Energy Convers. Manag., 2019. https://doi.org/10.1016/j.enconman.2018.12.009

  20. Lucian, M., Volpe, M., Gao, L., Piro, G., Goldfarb, J.L., and Fiori, L., Fuel, 2018. https://doi.org/10.1016/j.fuel.2018.06.060

  21. Lin, Y., Ma, X., Peng, X., and Yu, Z., Biores. Technol., 2017. https://doi.org/10.1016/j.biortech.2017.06.117

  22. Kim, D., Park, K.Y., and Yoshikawa, K., Eng. Appl. Biochar., 2017. https://doi.org/10.5772/intechopen.68221

    Book  Google Scholar 

  23. Reza, M.T., Uddin, M.H., Lynam, J.G., and Coronella, C.J., Biomass Bioenergy, 2014, vol. 63, p. 229. https://doi.org/10.1016/j.biombioe.2014.01.038

    Article  CAS  Google Scholar 

  24. Zhao, P., Shen, Y., Ge, S., Chen, Z., and Yoshikawa, K., Appl. Energy, 2014, vol. 131, p. 345. https://doi.org/10.1016/j.apenergy.2014.06.038

    Article  CAS  Google Scholar 

  25. Mäkelä, M., Forsberg, J., Söderberg, C., Larsson, S.H., and Dahl, O., Biores. Technol., 2018, vol. 263, p. 654. https://doi.org/10.1016/j.biortech.2018.05.044

    Article  CAS  Google Scholar 

  26. Javadzadeh, Y. and Hamedeyaz, S., Trends Helicobacter pylori Infect., 2014, p. 13. https://doi.org/10.5772/57353

  27. Zhu, G., Yang, L., Gao, Y., Xu, J., Chen, H., Zhu, Y., Wang, Y., Liao, C., Lu, C., and Zhu, C., Fuel, 2019, vol. 244, p. 479. https://doi.org/10.1016/j.fuel.2019.02.039

    Article  CAS  Google Scholar 

  28. Steurer, E. and Ardissone, G., Energy Procedia, 2015, vol. 79, p. 47. https://doi.org/10.1016/j.egypro.2015.11.473

    Article  CAS  Google Scholar 

  29. Tumuluru, J.S., Biomass Preprocessing and Pretreatments for Production of Biofuels, 2018.https://doi.org/10.1201/9781315153735

  30. Basu, P., Biomass Gasification Design Handbook, Elsevier, 2010, p. 27. https://doi.org/10.1016/b978-0-12-374988-8.00002-7

    Book  Google Scholar 

  31. Naderi, M. and Vesali-Naseh, M., Biomass Convers. Biorefinery, 2019. https://doi.org/10.1007/s13399-019-00513-2

    Book  Google Scholar 

  32. Zornoza, R., Moreno-Barriga, F., Acosta, J.A., Mu-ñoz, M.A., and Faz, A., Chemosphere, 2016, vol. 144, p. 122. https://doi.org/10.1016/j.chemosphere.2015.08.046

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, X., Zhang, L., and Li, A., J. Environ. Manage., 2017, vol. 201, p. 52. https://doi.org/10.1016/j.jenvman.2017.06.018

    Article  CAS  PubMed  Google Scholar 

  34. Khandelwal, H., Dhar, H., Thalla, A.K., and Kumar, S., J. Clean. Prod., 2019, vol. 209, p. 630. https://doi.org/10.1016/j.jclepro.2018.10.233

    Article  Google Scholar 

  35. Dong, M., Mao, X., Gonzalez, J.J., Lu, J., and Russo, R.E., J. Anal. At. Spectrom., 2012, vol. 27, no. 12, p. 2066. https://doi.org/10.1039/c2ja30222e

    Article  CAS  Google Scholar 

  36. Vassilev, S.V., Vassileva, C.G., and Vassilev, V.S., Fuel, 2015, vol. 158, p. 330. https://doi.org/10.1016/j.fuel.2015.05.050

    Article  CAS  Google Scholar 

  37. Vassilev, S.V., Vassileva, C.G., Song, Y.C., Li, W.Y., and Feng, J., Fuel, 2017, vol. 208, p. 377. https://doi.org/10.1016/j.fuel.2017.07.036

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to express our sincere thanks, gratitude and appreciations to LPPM ITS, for funding the current research under the scheme of Pascasarjana Research Grant 2019. We also would like to extend our appereciations to all members of Energy Engineering and Environmental Conditioning Laboratory, Department of Engineering Physics ITS for their enormous contributions to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Budi Siswanto.

Ethics declarations

The data that support the findings of this study are available from the corresponding author upon reasonable request.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hantoro, R., Septyaningrum, E., Siswanto, B.B. et al. Hydrochar Production through the HTC Process: Case Study of Municipal Solid Waste Samples in East Java, Indonesia. Solid Fuel Chem. 54, 418–426 (2020). https://doi.org/10.3103/S036152192006004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S036152192006004X

Keywords:

Navigation