Skip to main content
Log in

A CDM-backstepping control with nonlinear observer for electrically driven robot manipulator

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

This paper presents a CDM-backstepping strategy for motion control of Electrically-driven manipulator under the conditions of uncertainty and the action of external disturbance, while incorporating a nonlinear observer. Based on this model, a systematic analysis and design algorithm is developed to deal with stabilization and trajectory tracking of elbow robot, one feature of this work is employing the backstepping observer to achieve the exponential stability with position and velocity estimations. The results of computer simulations demonstrate that accurate and robust motion control can be achieved by using the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frank, L.L., Darren, M.D., and Chaouki, T.A., Robot Manipulator Control Theory and Practice, New York: Marcel Dekker Inc., 2004.

    Google Scholar 

  2. Jorge, A., Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms, New York: Springer- Verlag, 2003.

    Google Scholar 

  3. Chen, Y.F. and Huang, A.C., Controller design for a class of underactuated mechanical systems, IET Control Theory and Applications, 2012, vol. 6, no. 1, pp. 103–110.

    Article  MathSciNet  Google Scholar 

  4. Farzin, P., Nasri, S., Amin, J., Sobhan, S., and Iman, N., Artificial robust control of robot arm: Design a novel SISO backstepping adaptive Lyapunov based variable structure control, Int. J. Control Autom., 2011, vol. 4, no. 4, pp. 91–110.

    Google Scholar 

  5. Morteza, S., Zahra, R., and Behrooz, R., Fuzzy sliding mode control for hyper chaotic Chen system, Adv. Electr. Comput. Eng., 2012, vol. 12, no. 1, pp. 85–90.

    Article  Google Scholar 

  6. Mohamadreza, H., Mehdi, K., and Mostafa, G., A robust tracking controller for electrically driven robot manipulators: Stability analysis and experiment, Int. J. Autom. Comput., 2015, vol. 12, no. 1, pp. 83–92.

    Article  Google Scholar 

  7. Alireza, I., Ali, A.K., Mohammad, M.F., and Mohammad, R.R., A robust anti-windup control design for electrically driven robots-theory and experiment, Int. J. Control Autom. Syst., 2011, vol. 9, no. 5, pp. 1005–1012.

    Article  Google Scholar 

  8. Wu, W. and Jean, B.M., Fuzzy sensor-based motion control among dynamic obstacles for intelligent rigid-link electrically driven arm manipulators, J. Intell. Rob. Syst., 2001, vol. 30, pp. 49–71.

    Article  MATH  Google Scholar 

  9. Mohammad, M.F. and Sara, F., Decentralized direct adaptive fuzzy control of robots using voltage control strategy, Nonlinear Dyn., 2012, vol. 70, pp. 1919–1930.

    Article  MathSciNet  Google Scholar 

  10. Chowarit, M., Manuel, N., Kiyoshi, O., and Seiichiro, K., Design for sensorless force control of f lexible robot by using resonance ratio control based on coefficients diagram method, Automatika, 2013, vol. 54, no. 1, pp. 62–73.

    Google Scholar 

  11. Cheng, C.K., Chin, E.L., and Rong, T.W., Tracking and balance control of ball and plate system, J. Chin. Inst. Eng., 2007, vol. 30, no. 3, pp. 459–470.

    Article  Google Scholar 

  12. Yao, Y. and Yi-Sheng, Z., Robust backstepping output tracking control for SISO uncertain nonlinear systems with unknown virtual control coefficients, Int. J. Control, 2010, vol. 83, no. 6, pp. 1182–1192.

    Article  MathSciNet  MATH  Google Scholar 

  13. Yaote, C. and Chih-Chiang, C., Block backstepping control of multi-input nonlinear systems with mismatched perturbations for asymptotic stability, Int. J. Control, 2010, vol. 83, no. 10, pp. 2028–2039.

    Article  MathSciNet  MATH  Google Scholar 

  14. Ruicheng, M., Shengzhi, Z., and Min, W., Global robust stabilisation of a class of uncertain switched nonlinear systems with dwell time specifications, Int. J. Control, 2014, vol. 87, no. 3, pp. 589–599.

    Article  MathSciNet  MATH  Google Scholar 

  15. Anna, W., Miroslaw, T., and Roman, S., A backstepping approach to ship course control, Int. J. Appl. Math. Comput. Sci., 2007, vol. 17, no. 1, pp. 73–85.

    MathSciNet  MATH  Google Scholar 

  16. Chi, Y.C. and Sing, K.N., Backstepping control for a class of power systems, Syst. Anal. Modell. Simul., 2002, vol. 42, no. 6, pp. 825–849.

    MathSciNet  MATH  Google Scholar 

  17. Jung-Shan, L. and Chiou-Jye, H., Nonlinear backstepping active suspension design applied to a half-car model, Veh. Syst. Dyn., 2004, vol. 42, no. 6, pp. 373–393.

    Article  Google Scholar 

  18. Bousmaha, B., Abdeldjebar, H., Hachemi, G., Fellah, M., Ismail, K.B., and Pierre, S., Backstepping control for multi-machine web winding system, J. Electr. Eng. Technol., 2011, vol. 6, no. 1, pp. 59–66.

    Article  Google Scholar 

  19. Said, D., Mohamed, T., and Mohamed, S.N., Robust backstepping vector control for the doubly fed induction motor, IET Control Theory Appl., 2007, vol. 1, no. 4, pp. 861–868.

    Article  MathSciNet  Google Scholar 

  20. Zhang, C.-D., Wang, X.-H., and Xiao, J.-M., Ship dynamic positioning system based on backstepping control, J. Theor. Appl. Inf. Technol., 2013, vol. 51, no. 1, pp. 129–136.

    MathSciNet  Google Scholar 

  21. Aranzazu, D.M. and Jesus, R.V., Backstepping controller design to track maximum power in photovoltaic Systems, Automatika, 2014, vol. 55, no. 1, pp. 22–31.

    Google Scholar 

  22. Sung-Hua, C. and Li-Chen, F., Observer-based backstepping control of a 6-dof parallel hydraulic manipulator, Control Eng. Pract., 2015, vol. 36, pp. 100–112.

    Article  Google Scholar 

  23. Chang’e, R., Shaocheng, T., and Yongming, L., Fuzzy adaptive high-gain-based observer backstepping control for SISO nonlinear systems with dynamical uncertainties, Nonlinear Dyn., 2012, vol. 67, pp. 941–955.

    Article  MathSciNet  MATH  Google Scholar 

  24. Nicolas, B., Roland, L., Benoit, T., and Philippe, M., A tire stiffness backstepping observer dedicated to allterrain vehicle rollover prevention, Adv. Rob., 2008, vol. 22, pp. 1267–1285.

    Article  Google Scholar 

  25. Daisuke, T. and Shinji, H., Backstepping observer design for parabolic PDEs with measurement of weighted spatial averages, Automatica, 2015, vol. 53, pp. 179–187.

    Article  MathSciNet  Google Scholar 

  26. Krasnova, S.A., Cascaded design of the state observer for nonlinear systems in the presence of external perturbations, Autom. Remote Control, 2003, vol. 64, no. 1, pp. 3–26.

    Article  MathSciNet  MATH  Google Scholar 

  27. Chen-Sheng, T. and Yong-Nong, C., Observer-based backstepping control of linear stepping motor, Control Eng. Pract., 2013, vol. 21, pp. 930–939.

    Article  Google Scholar 

  28. Qing, W., Delong, H., Chaoyang, D., and Xuejiao, S., Reduced-order observer-based backstepping tracking control for a class of stochastic nonlinear systems, Nonlinear Dyn., 2014, vol. 78, pp. 939–956.

    Article  MathSciNet  MATH  Google Scholar 

  29. Golubev, A.E., Krishchenko, A.P., and Tkachev, S.B., Stabilization of nonlinear dynamic systems using the system state estimates made by the asymptotic observer, Autom. Remote Control, 2005, vol. 66, no. 7, pp. 1021–1058.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Haouari.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haouari, F., Bali, N., Tadjine, M. et al. A CDM-backstepping control with nonlinear observer for electrically driven robot manipulator. Aut. Control Comp. Sci. 50, 332–346 (2016). https://doi.org/10.3103/S0146411616050047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411616050047

Keywords

Navigation