Skip to main content

Motion/Force Control for the Constrained Electrically Driven Mobile Manipulators Based on Hybrid Backstepping Control Approach

  • Conference paper
  • First Online:
Soft Computing: Theories and Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1380))

Abstract

This paper designs a hybrid backstepping control approach for the constrained electrically driven mobile manipulator by merging the advantages of the model-based approach and the neural network-based model-free approach and the conventional backstepping control scheme. The backstepping approach provides the strong robustness against the uncertainties. Additionally, an adaptive compensator term is also adopted to diminish the effects of the uncertainties like reconstruction error, bounded external disturbances, and friction terms. Next, stability analysis is done by making use of the adaptation laws and Lyapunov stability theory. The complete system is guaranteed to be asymptotic stable. Simulation tests on two-link electrically driven manipulator demonstrate the efficiency and robustness of the presented control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xiao, L., Zhang, Y.: A new performance index for the repetitive motion of mobile manipulators. Int. J. Model. Identification Control 21(2), 193–201 (2014)

    Google Scholar 

  2. Asl, A.N., Menhaj, M.B., Sajedin, A.: Control of leader-follower formation and path planning of mobile robots using asexual reproduction optimization (ARO). Appl. Soft Comput. 14, 563–576 (2014)

    Article  Google Scholar 

  3. Zhang, Y., Li, W., Liao, B., Guo, D., Peng, C.: Analysis and verification of repetitive motion planning and feedback control for omnidirectional mobile manipulator robotic systems. J. Intell. Rob. Syst. 75, 393–411 (2014)

    Article  Google Scholar 

  4. Liu, Y., Li, Y.: Sliding mode adaptive neural-network control for nonholonomic mobile modular manipulators. J. Intell. Rob. Syst. 44(3), 203–224 (2005)

    Article  Google Scholar 

  5. Lin, S., Goldenberg, A.A.: Neural-network control of mobile manipulators. IEEE Trans. Neural Netw. 12(5), 1121–1133 (2001)

    Article  Google Scholar 

  6. Chen, Y., Liu, L., Zhang, M., Rong, H.: Study on coordinated control and hardware system of a mobile manipulator. In: World Congress on Intelligent Control and Automation (WCICA) (2006). https://doi.org/10.1109/WCICA.2006.1713748

  7. Li, Z., Ge, S.S., Adams, M.: Adaptive robust output feedback motion/force control of electrically driven nonholonomic mobile manipulators. IEEE Trans. Control Syst. Technol. 16(6), 1308–1315 (2008)

    Article  Google Scholar 

  8. Karry, A., Feki, M.: Adaptive tracking control of a mobile manipulator actuated by DC motors. Int. J. Model. Identification Control 21(2), 193–201 (2014)

    Google Scholar 

  9. Park, B.S., Park, J.B., Choi, Y.H.: Robust formation control of electrically driven nonholonomic mobile robots via sliding mode technique. Int. J. Control Autom. Syst. 9(5), 888–894 (2011)

    Article  Google Scholar 

  10. Guangxin, H., Yanhui, Z.: Trajectory tracking control of nonholonomic wheeled mobile robots with actuator dynamic being considered. Adv. Mater. Res. 433–440, 2596–2601 (2012)

    Google Scholar 

  11. Zhu, Y., Fan, L.: On robust hybrid force/motion control strategies based on actuator dynamics for nonholonomic mobile manipulators. J. Appl. Math. 1–19 (2012)

    Google Scholar 

  12. Boukens, M., Boukabou, A., Chadli, M.: Robust adaptive neural network based trajectory tracking control approach for nonholonomic electrically driven mobile robots. Robot. Auton. Syst. 92, 30–40 (2017)

    Article  Google Scholar 

  13. Sinaeefar, Z., Farrokhi, M.: Adaptive fuzzy model-based predictive control of nonholonomic wheeled mobile robots including actuator dynamics. Int. J. Sci. Eng. Res. 3(9), 1–7 (2012)

    Google Scholar 

  14. Cheng, L., Hou, Z.G., Tan, M.: Adaptive neural network tracking control for manipulators with uncertain kinematics, dynamics and actuator model. Automatica 45(10), 2312–2318 (2009)

    Article  MathSciNet  Google Scholar 

  15. Rajneesh, K.P., Santosh, K.R., Krishna, J.: Crop monitoring using IoT: a neural network approach. Soft Comput.: Theories Appl. 742, 123–132 (2018)

    Google Scholar 

  16. Vaishali, J., Rajendra, S.K.R., Ranjeet, S.T.: Named data network using trust function for securing vehicular Ad Hoc network. Soft Comput.: Theories Appl. 742, 463–471 (2018)

    Google Scholar 

  17. Suman, P., Malay, K.P.: A jitter-minimized stochastic real-time packet scheduler for intelligent routers. Soft Comput.: Theories Appl. 742, 547–556 (2018)

    Google Scholar 

  18. Rani, M., Kumar, N., Singh, H.P.: Efficient position/force control of constrained mobile manipulators. Int. J. Dyn. Control 6, 1629–1638 (2018)

    Article  MathSciNet  Google Scholar 

  19. Rani, M., Kumar, N., Singh, H.P.: Force/motion control of constrained mobile manipulators including actuator dynamics. Int. J. Dyn. Control 7, 940–954 (2019)

    Article  MathSciNet  Google Scholar 

  20. Rani, M., Dinanath, Kumar, N.: A new hybrid back stepping approach for the position/force control of mobile manipulators. In: International Conference on Next Generation Computing Technologies (NGCT), in Communications in Computer and Information Science (CCIS) Series, vol. 922, pp. 183–198 (2019)

    Google Scholar 

  21. Chiu, C.H., Peng, Y.F., Lin, Y.W.: Intelligent backstepping control for wheeled inverted pendulum. Expert Syst. Appl. 38(4), 33643371 (2011)

    MATH  Google Scholar 

  22. Mai, T.L., Wang, Y.: Adaptive-backstepping force/motion control for mobile-manipulator robot based on fuzzy CMAC neural networks. Control Theory Technol. 12(4), 368–382 (2014)

    Article  Google Scholar 

  23. Chen, N., Song, F., Li, G., Sun, X., Ai, C.: An adaptive sliding mode backstepping control for the mobile manipulator with nonholonomic constraints. Commun. Nonlinear Sci. Numer. Simul. 18, 2885–2899 (2013)

    Article  MathSciNet  Google Scholar 

  24. Cheng, M.B., Tsai, C.C.: Robust backstepping tracking control using hybrid sliding-mode neural network for a nonholonomic mobile manipulator with dual arms. In: Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference. pp. 1964–1969 (2005)

    Google Scholar 

  25. Lin, F., Chang, C., Huang, P.: Fpga-based adaptive backstepping slidingmode control for linear induction motor drive. IEEE Trans. Power Electron. 22(4), 1222–1231 (2007)

    Article  Google Scholar 

  26. Chen, C.L., Peng, C.C., Yau, H.T.: High-order sliding mode controller with backstepping design for aeroelastic systems. Commun. Nonlinear Sci. Numer. Simul. 17(4), 1813–1823 (2012)

    Article  MathSciNet  Google Scholar 

  27. Chen, N., Song, F., Li, G., Sun, X., Ai, C.: An adaptive sliding mode backstepping control for the mobile manipulator with nonholonomic constraints. Commun. Nonlinear Sci. Numer. Simul. 18(10), 2885–2899 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, N., Rani, M. (2022). Motion/Force Control for the Constrained Electrically Driven Mobile Manipulators Based on Hybrid Backstepping Control Approach. In: Sharma, T.K., Ahn, C.W., Verma, O.P., Panigrahi, B.K. (eds) Soft Computing: Theories and Applications. Advances in Intelligent Systems and Computing, vol 1380. Springer, Singapore. https://doi.org/10.1007/978-981-16-1740-9_36

Download citation

Publish with us

Policies and ethics