Skip to main content
Log in

Current Crystallography: Is it Helpful to Earth Sciences?

  • Published:
Moscow University Geology Bulletin Aims and scope Submit manuscript

Abstract

Crystallography, which originated in the 17th century at the junction of mineralogy and mathematics, later became considered as a science that is closer to physics, chemistry, biology, and even medicine. This was related to its restrained perception by the Earth Sciences scientific community. The important role of the most advanced crystallographic methods, results of studies, and ideas in the development of conceptions on the composition and structure of the Earth and planets is shown based on particular examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.

Similar content being viewed by others

REFERENCES

  1. Arakcheeva, A., Bindi, L., Pattison, P., et al., The incommensurately modulated structures of natural natrite at 120 and 293 K from synchrotron X-ray data, Am. Mineral., 2010, vol. 95, no. 4, pp. 574–581. https://doi.org/10.2138/am.2010.3384

    Article  Google Scholar 

  2. Balitsky, D., Villeval, P., and Lupinski, D., Growth of large scale nonlinear LBO and electro-optic RTP crystals: State of the art and applications, Advanced Solid State Lasers, 2015. https://doi.org/10.1364/ASSL.2015.AM1A.2

  3. Balitsky, D., Villeval, P., and Lupinski, D., Elaboration of large LBO and RTP crystals for nonelinear and electro optic applications, in ICCGE-19/OMVPE-19 Program and Abstr. Book. 2019. Friday, August 2. Symposium Fundamentals of Crystal Growth: Colloids and Crystal Growth in Solution, Elsevier, 2019, pp. 8.30–8.45.

  4. Barlow, W., Probable nature of the internal symmetry of crystals, Nature, 1883, vol. 29, pp. 186–188. https://doi.org/10.1038/029186a0

    Article  Google Scholar 

  5. Barton, I.F., Trends in the discovery of new minerals over the last century, Am. Mineral., 2019, vol. 104, no. 5, pp. 641–651.

    Article  Google Scholar 

  6. Bindi L., Arakcheeva, A., and Chapuis, G., The role of silver on the stabilization of the incommensurately modulated structure in calaverite, AuTe2, Am. Mineral., 2009, vol. 94, pp. 728–736.

    Article  Google Scholar 

  7. Bindi, L., Steinhardt, P.J., Yao, N., and Lu, P.J., Natural quasicrystals, Science, 2009, vol. 324, pp. 1306–1309.

    Article  Google Scholar 

  8. Bindi, L., Lin, C., Ma, C., and Steinhardt, P.J., Collisions in outer space produced an icosahedral phase in the Khatyrka meteorite never observed previously in the laboratory, Sci. Rep., 2016, vol. 6, 38117. https://doi.org/10.1038/srep38117

    Article  Google Scholar 

  9. Bindi, L., Nespolo, M., Krivovichev, S.V., et al., Producing highly complicated materials. nature does it better, Rep. Prog. Phys., 2020, vol. 83, 106501. https://doi.org/10.1088/1361-6633/abaa3a

    Article  Google Scholar 

  10. Bindi, L., Kolb, W., Eby, G.N., et al., Accidental synthesis of a previously unknown quasicrystal in the first atomic bomb test, Proc. Natn. Acad. Sci., 2021, vol. 118, no. 22, e2101350118. https://doi.org/10.1073/pnas.2101350118

    Article  Google Scholar 

  11. Bish, D.L., Blake, D.F., Vaniman, D.T., et al., X-ray diffraction results from Mars science laboratory: Mineralogy of rocknest at Gale crater, Science, 2013, vol. 341, no. 6153, p. 1238932. https://doi.org/10.1126/science.1238932

    Article  Google Scholar 

  12. Bolotina, N.B., X-ray diffraction analysis of modulated crystals: Review, Crystal. Rep., 2007, vol. 52, no. 4, pp. 647–658.

    Article  Google Scholar 

  13. Capitani, G., Synchysite-(Ce) from Cinquevalli (Trento, Italy): Stacking disorder and the polytypism of (Ca,REE)-Fluorcarbonates, Minerals, 2020, vol. 10 (1), no. 77. https://doi.org/10.3390/min10010077

  14. Dam, B., Janner, A., and Donnay, J.D.H., Incommensurate morphology of calaverite (AuTe2) crystals, Phys. Rev. Lett., 1985, vol. 55, pp. 2301–2304.

    Article  Google Scholar 

  15. Faurel, B., Durand, E., Maurice, S., et al., New developments on chemcam laser transmitter and potential applications for other planetology programs, in Proc. V. 10564. Int. Space Optics Conf. — ICSO 2012. 105642I (2017), 105642I-2-9. https://doi.org/10.1117/12.2309236

  16. Ferraris, G., Early contributions of crystallography to the atomic theory of matter, Substantia, 2019, vol. 3, no. 1, pp. 131–138. https://doi.org/10.13128/Substantia-81

    Article  Google Scholar 

  17. Ferraris, C., Weinert, O., and Ferraris, G., La correspondence entre Henri Hureau de Senarmont et Quintino Sella, Saggi Studi, Riv. Stor. Univ. Torino, 2020, vol. IX, no. 2, pp. 51–127.

  18. Goldschmidt, V., Palache, C., and Peacock, M., Über calaverit, N. Jahrb. Miner., 1931, vol. 63, pp. 1–58.

    Google Scholar 

  19. Grew, E.S., Hystad, G., Hazen, R.M., et al., How many boron minerals occur in Earth’s upper crust? Am. Mineral., 2017, vol. 102, no. 8, pp. 1573–1587. https://doi.org/10.2138/am-2017-5897

    Article  Google Scholar 

  20. Hargittai, I., Generalizing crystallography: a tribute to Alan L. Mackay at 90, Struct. Chem., 2016, vol. 28, no. 1, pp. 1–16. https://doi.org/10.1007/s11224-016-0766-1

    Article  Google Scholar 

  21. Hargittai, I. and Hargittai, B., Physics Nobel laureate Roger Penrose and the Penrose pattern as a forerunner of generalized crystallography, Struct. Chem., 2020, vol. 32, pp. 1–7. https://doi.org/10.1007/s11224-020-01669-8

    Article  Google Scholar 

  22. Irifune, T., Fujino, K., and Ohtani, E., A new high pressure form of MgAl2O4, Nature, 1991, vol. 349, pp. 409–411.

    Article  Google Scholar 

  23. Janner, A. and Janssen, T., From crystal morphology to molecular and scale crystallography, Phys. Scr., 2015, vol. 90, no. 8, 088007. https://doi.org/10.1088/0031-8949/90/8/088007

    Article  Google Scholar 

  24. Li, J., Ma, Z., He, C., et al., An effective strategy to achieve deeper coherent light for LiB3O5, J. Materials Chem., vol. 4, no. 10, pp. 1926–1934. https://doi.org/10.1039/C5TC03814F

  25. Maurice, S., Wiens, R.C., Bernardi, P., et al., The SuperCam instrument suite on the Mars 2020 Rover: Science objectives and mast-unit description, Space Sci. Rev., 2020, vol. 217, no. 47. https://doi.org/10.1007/s11214-021-00807-w

  26. Novikova, N., Sorokina, N., Verin, I., et al., Structural reasons for the nonlinear optical properties of KTP family single crystals, Crystals, 2018, vol. 8, no. 7. https://www.mdpi.com/2073-4352/8/7/283/htm.

  27. Oganov, A.R., Gillan, M.J., and Price, G.D., Structural stability of silica at high pressures and temperatures, Phys. Rev., 2005, vol. 71, no. 6, 064104 (8). https://doi.org/10.1103/PhysRevB.71.064104

  28. Pereira, A.L.J., Gracia, L., Santamaria-Perez, D., et al., Structural and vibrational study of cubic Sb2O3 under high pressure, Phys. Rev. B, 2012, vol. 85, no. 17. https://doi.org/10.1103/PhysRevB.85.174108

  29. Pluth, J.J., Smith, J.V., Pushcharovsky, D.Y., et al., Third-generation synchrotron x-ray diff raction of 6-µm crystal of raite, ≈Na3Mn3Ti0.25Si8O20(OH)2·10H2O, opens up new chemistry and physics of low-temperature minerals, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 12263–12267. https://doi.org/10.1073/pnas.94.23.12263

    Article  Google Scholar 

  30. Pushcharovsky, Yu.M., Three paradigms in geology, Geotektonika, 1995, no. 1, pp. 4–11.

  31. Pushcharovsky, Yu.M., Seismostratigraphy and structure of the mantle: Tectonic aspect, Dokl. Ross. Akad. Nauk, 1996, vol. 351, no. 6, pp. 806–809.

    Google Scholar 

  32. Pushcharovsky, D.Yu., Rentgenografiya mineralov (X-Ray Radiography of Minerals), Moscow: Geoinformmark, 2000 [in Russian].

  33. Pushcharovsky, D.Yu., Iron and Its Compounds in the Earth’s Core: New Data and Ideas, Geochem. Int., 2019, vol. 57, no. 9, pp. 941–955.

    Article  Google Scholar 

  34. Pushcharovsky, D.Yu., Mineralogicheskaya kristallografiya (Mineralogical Crystallography), Moscow: Geokart-GEOS, 2020 [in Russian].

  35. Pushcharovsky, D.Yu. and Pushcharovsky, Yu.M., The mineralogy and the origin of deep geospheres: A review, Earth Sci. Rev., 2012, vol. 113, pp. 104–109.

    Article  Google Scholar 

  36. Pushcharovsky, D.Yu. and Pushcharovsky, Yu.M., New insight into the composition and the structure of the deep layers of the terrestrial planets, Moscow Univ. Geol. Bull., 2016, vol. 71, no. 1, pp. 1–7.

    Article  Google Scholar 

  37. Pushcharovsky, Yu.M. and Pushcharovsky, D.Yu., Geologiya mantii Zemli (Geology of the Earth’s Mantle), Moscow: GEOS, 2010 [in Russian].

  38. Rozhdestvenskaya, I., Mugnaioli, E., Czank, M., et al., The structure of charoite, (K,Sr,Ba,Mn)15–16(Ca,Na)32 [(Si70(O,OH)180)](OH,F)4.0·nH2O, solved by conventional and automated electron diffraction, Mineral. Mag., 2010, vol. 74, no. 1, pp. 159–177. https://doi.org/10.1180/minmag.2010.074.1.159

    Article  Google Scholar 

  39. Sarp, H. and Pushcharovsky, D.Yu., Maclean, E.J., et al., Tillmannsite, (Ag3Hg)(V,As)O4, a new mineral: Its description and crystal structure, Europ. J. Mineral., 2003, vol. 15, no. 1, pp. 177–180. https://doi.org/10.1127/0935-1221/2003/0015-0177

    Article  Google Scholar 

  40. Schechtman, D., Blech, I., Gratias, D., et al., Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett., 1984, vol. 53, pp. 1951–1953.

    Article  Google Scholar 

  41. Schwarzenbach, D., Crystallography, Chichester; N.Y: John Wiley, 1996.

    Google Scholar 

  42. Wagner, T. and Schonleber, A., A non-mathematical introduction to the superspace description of modulated structures, Acta Crystallogr., Sect. B: Struct. Sci., 2009, vol. 65, no. 3, pp. 249–268. https://doi.org/10.1107/S0108768109015614

    Article  Google Scholar 

  43. Weil, M., Tillmanns, E., and Pushcharovsky, D.Yu., Hydrothermal single-crystal growth in the systems Ag/Hg/X/O (X = VV,-AsV): Crystal structures of (Ag3Hg)VO4, (Ag2Hg2)3(VO4)4, and (Ag2Hg2)2(HgO2)(AsO4)2 with the unusual tetrahedral cluster cations (Ag3Hg)3+ and (Ag2Hg2)4+ and crystal structure of AgHgVO4, Inorg. Chem., vol. 44, pp. 1443–1451.

  44. Witze, A., A month on Mars: What NASA’s perseverance rover has found so far, Nature, 2021, vol. 591, pp. 509–510. https://doi.org/10.1038/d41586-021-00698-5

    Article  Google Scholar 

  45. De Wolff, P.M., The pseudo-symmetry of modulated crystal structures, Acta Crystallogr. Sect. A, 1974, vol. 30, no. 6, pp. 777–785. https://doi.org/10.1107/S0567739474010710

    Article  Google Scholar 

  46. Yang, H., Konzett, J., and Prewitt, Ch.T., Crystal structure of a new (21)-clinopyribole synthesized at high temperature and pressure, Am. Mineral., 2001, vol. 86, pp. 1261–1266.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to the Head of the R.D. Department of Cristal Laser Company D.V. Balitsky for provided materials and discussion on the application of nonlinear optical crystals in laser analyzers, as well as the Corresponding Members of the RAS E.V. Antipov, N.V. Bolotina, and D.G. Koshchug for discussion of the manuscript.

Funding

This work was supported by the Russian Science Foundation, project no. 19-17-00050.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Pushcharovsky.

Ethics declarations

The author declares that he has no conflict of interests.

Additional information

Dedicated to 270th Anniversary of Moscow State University

Translated by I. Melekestseva

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushcharovsky, D.Y. Current Crystallography: Is it Helpful to Earth Sciences?. Moscow Univ. Geol. Bull. 77, 157–178 (2022). https://doi.org/10.3103/S0145875222020065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0145875222020065

Keywords:

Navigation