Skip to main content
Log in

Bioresorbable Scaffolds Based on Fibroin for Bone Tissue Regeneration

  • Methods
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract

Using the tissue-engineered constructs based on scaffolds that imitate the extracellular matrix of living tissues unveils new opportunities in the treatment of various pathologies and injuries associated with tissue and organ damage. Silk fibroin of silkworm Bombyx mori is a biocompatible and bioresorbable polymer with high mechanical strength and elasticity that allows creating scaffolds on its basis for regeneration of various tissues, including bone. In the present work, fibroin scaffolds were obtained. They were designed in the form of porous sponges, films, and hybrid scaffolds of a bilayer structure in which the porous sponge threedimensional structure is limited on one side by a film. The structure of the scaffolds and their biocompatibility were studied: immortalized and primary fibroblasts, as well as the osteoblast-like cells, have been shown to successfully adhere and proliferate on the surface of the studied scaffolds. Numerous osteogenesis foci have been observed in the implant region 4 weeks after the fibroin porous scaffold implantation in the in vivo experiments in a rat femoral bone defect model indicating the osteoconduction of the scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albrektsson, T. and Johansson, C., Osteoinduction, osteoconduction and osseointegration, Eur. Spine J., 2001, vol. 10, suppl. 2, pp. S96–S101.

    PubMed  PubMed Central  Google Scholar 

  2. Schroeder, J.E. and Mosheiff, R., Tissue engineering approaches for bone repair: Concepts and evidence, Injury, 2011, vol. 42, no. 6, pp. 609–613.

    Article  PubMed  Google Scholar 

  3. Fillingham, Y. and Jacobs, J., Bone grafts and their substitutes, Bone Joint J., 2016, vol. 98, suppl. A, pp. 6–9.

    Article  PubMed  Google Scholar 

  4. Miron, R.J. and Zhang, Y.F., Osteoinduction: A review of old concepts with new standards, J. Dent. Res., 2012, vol. 91, no. 8, pp. 736–744.

    Article  CAS  PubMed  Google Scholar 

  5. Laurencin, C., Khan, Y., and El-Amin, S.F., Bone graft substitutes, Expert Rev. Med. Devices, 2006, vol. 3, no. 1, pp. 49–57.

    Article  CAS  PubMed  Google Scholar 

  6. Wu, S., Liu, X., Yeung, K.W.K., Liu, C., and Yang, X., Biomimetic porous scaffolds for bone tissue engineering, Mater. Sci. Eng. R. Rep., 2014, vol. 80, pp. 1–36.

    Article  Google Scholar 

  7. Melke, J., Midha, S., Ghosh, S., Ito, K., and Hofmann, S., Silk fibroin as biomaterial for bone tissue engineering, Acta Biomater., 2016, vol. 31, pp. 1–16.

    Article  CAS  PubMed  Google Scholar 

  8. Bagrov, D., Zhuikov, V., Chudinova, Y., Yarisheva, A., Kotlyarova, M., Arkhipova, A., Khaydapova, D., Moisenovich, M., and Shaitan, K., Mechanical properties of films and three-dimensional scaffolds made of fibroin and gelatin, Biophysics, 2017, vol. 62, no. 1, pp. 17–23.

    Article  CAS  Google Scholar 

  9. Orlova, A.A., Kotlyarova, M.S., Lavrenov, V.S., Volkova, S.V., and Arkhipova, A.Y., Relationship between gelatin concentrations in silk fibroin-based composite scaffolds and adhesion and proliferation of mouse embryo fibroblasts, Bull. Exp. Biol. Med., 2014, vol. 158, no. 1, pp. 88–91.

    Article  CAS  PubMed  Google Scholar 

  10. Moisenovich, M.M., Kulikov, D.A., Arkhipova, A.Y., Malyuchenko, N.V., Kotlyarova, M.S., Goncharenko, A.V., Kulikov, A.V., Mashkov, A.E., Agapov, I.I., Paleev, F.N., Svistunov, A.A., and Kirpichnikov, M.P., Fundamental bases for the use of silk fibroin-based bioresorbable microvehicles as an example of skin regeneration in therapeutic practice, Ter. Arkh., 2015, vol. 87, no. 12, pp. 66–72.

    Article  CAS  PubMed  Google Scholar 

  11. Huang, Y., Ren, J., Ren, T., Gu, S., Tan, Q., Zhang, L., Lv, K., Pan, K., and Jiang, X., Bone marrow stromal cells cultured on poly (lactide-co-glycolide)/nanohydroxyapatite composites with chemical immobilization of ARG-GLY-ASP peptide and preliminary bone regeneration of mandibular defect thereof, J. Biomed. Mater. Res. A, 2010, vol. 95, no. 4, pp. 993–1003.

    Article  PubMed  Google Scholar 

  12. Sheikh, Z., Hamdan, N., Ikeda, Y., Grynpas, M., Ganss, B., and Glogauer, M., Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: A review, Biomater. Res., 2017, vol. 21, p. 9.

    Google Scholar 

  13. Liao, S., Wang, W., Uo, M., Ohkawa, S., Akasaka, T., Tamura, K., Cui, F., and Watari, F., A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration, Biomaterials, 2005, vol. 26, no. 36, pp. 7564–7571.

    Article  CAS  PubMed  Google Scholar 

  14. Liao, S., Yokoyama, A., Zhu, Y., Watari, F., Ramakrishna, S., and Chan, C.K., In vitro and in vivo behaviors of the three-layered nanocarbonated hydroxyapatite/collagen/PLGA composite, J. Bioact. Compat. Polym., 2010, vol. 25, no. 2, pp. 154–168.

    Article  CAS  Google Scholar 

  15. Zhang, W., Zhu, C., Ye, D., Xu, L., Zhang, X., Wu, Q., Zhang, X., Kaplan, D.L., and Jiang, X., Porous silk scaffolds for delivery of growth factors and stem cells to enhance bone regeneration, PLoS One, 2014, vol. 9, no. 7.

    Google Scholar 

  16. Muraev, A.A., Bonartsev, A.P., Gazhva, Yu.V., et al., Development and preclinical studies of orthotopic bone implants based on a hybrid construction from poly (3-hydroxybutyrate) and sodium alginate, Sovrem. Technol. Med., 2016, vol. 8, no. 4, pp. 42–49.

    Article  Google Scholar 

  17. Polo-Corrales, L., Latorre-Esteves, M., and Ramirez-Vick, J.E., Scaffold design for bone regeneration, J. Nanosci. Nanotechnol., 2014, vol. 14, no. 1, pp. 15–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Costa-Almeida, R., Soares, R., and Granja, P.L., Fibroblasts as maestros orchestrating tissue regeneration, J. Tissue Eng. Regen. Med., 2017. doi 10.1002/term.2405

    Google Scholar 

  19. Akhmanova, M., Osidak, E., Domogatsky, S., Rodin, S., and Domogatskaya, A., Physical, spatial, and molecular aspects of extracellular matrix of in vivo niches and artificial scaffolds relevant to stem cells research, Stem Cells Int., 2015, vol. 2015.

  20. Tseng, P.C., Young, T.H., Wang, T.M., Peng, H.W., Hou, S.M., and Yen, M.L., Spontaneous osteogenesis of MSCs cultured on 3D microcarriers through alteration of cytoskeletal tension, Biomaterials, 2012, vol. 33, no. 2, pp. 556–564.

    Article  CAS  PubMed  Google Scholar 

  21. Goncharenko, A.V., Malyuchenko, N.V., Moisenovich, A.M., Kotlyarova, M.S., Arkhipova, A.Y., Kon’kov, A.S., Agapov, I.I., Molochkov, A.V., Moisenovich, M.M., and Kirpichnikov, M.P., Changes in morphology of actin filaments and expression of alkaline phosphatase at 3D cultivation of MG-63 osteoblast- like cells on mineralized fibroin scaffolds, Dokl. Biochem. Biophys., 2016, vol. 470, no. 1, pp. 368–370.

    Article  CAS  PubMed  Google Scholar 

  22. Oryan, A., Alidadi, S., Moshiri, A., and Maffulli, N., Bone regenerative medicine: Classic options, novel strategies, and future directions, J. Orthop. Surg. Res., 2014, vol. 9, p. 18.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Kotliarova.

Additional information

Original Russian Text © M.S. Kotliarova, A.Yu. Arkhipova, A.M. Moysenovich, D.A. Kulikov, A.V. Kulikov, A.S. Kon’kov, M.A. Bobrov, I.I. Agapov, M.M. Moisenovich, A.V. Molochkov, A.V. Goncharenko, K.V. Shaitan, 2017, published in Vestnik Moskovskogo Universiteta, Seriya 16: Biologiya, 2017, Vol. 72, No. 4, pp. 222–228.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotliarova, M.S., Arkhipova, A.Y., Moysenovich, A.M. et al. Bioresorbable Scaffolds Based on Fibroin for Bone Tissue Regeneration. Moscow Univ. Biol.Sci. Bull. 72, 190–195 (2017). https://doi.org/10.3103/S0096392517040095

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392517040095

Keywords

Navigation