Skip to main content
Log in

Development and characterization of monoclonal antibodies to Ebola virus glycoprotein

  • Immunology
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract

Balb/С mice were immunized with recombinant Ebola virus glycoprotein. Following the selection, screening, and cloning of murine hybridomas, we obtained five genetically stable clones of monoclonal antibodies GPE118 (IgG), GPE274 (IgM), GPE325 (IgM), GPE463 (IgM), and GPE534 (IgG). These antibodies were isolated and purified from the ascitic fluid of Balb/С mice using Protein G affinity chromatography (for IgG) and euglobulin precipitation (for IgM). To select at least three candidate antibodies for testing in biological assays as components of an antibody cocktail for the prophylaxis and treatment of hemorrhagic fever, we carried out an immunochemical analysis of the epitope specificity of the isolated antibodies. Based on the data of immunoblotting and sandwich ELISA, it became evident that the epitope recognized by GPE 534 differs from the epitopes recognized by the monoclonal antibodies GPE 118 and GPE 325. The last two antibodies also have different epitope specificity: it follows from the immunoblotting data and from the data on the binding of these antibodies with the intact and oxidized (partly deglycosylated) recombinant glycoprotein. For the biological activity studies and the development of recombinant counterparts, we selected three candidate high-affinity monoclonal antibodies GPE 534, GPE 118, and GPE 325.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baize, S., Pannetier, D., Oestereich, L., et al., Emergence of Zaire Ebola virus disease in Guinea, N. Engl. J. Med., 2014, vol. 371, no. 15, pp. 1418–1425.

    Article  CAS  PubMed  Google Scholar 

  2. Geisbert, T.W., Young, H.A., Jahrling, P.B., Davis, K.J., Kagan, E., and Hensley, L.E., Mechanisms underlying coagulation abnormalities in ebola hemorrhagic fever: overexpression of tissue factor in primate monocytes/macrophages is a key event, J. Infect. Dis., 2003, vol. 188, no. 11, pp. 1618–1629.

    Article  CAS  PubMed  Google Scholar 

  3. Geisbert, T.W., Hensley, L.E., Jahrling, P.B., Larsen, T., Geisbert, J.B., Paragas, J., Young, H.A., Fredeking, T.M., Rote, W.E., and Vlasuk, G.P., Treatment of ebola virus infection with a recombinant inhibitor of factor VIIa/tissue factor: a study in rhesus monkeys, Lancet, 2003, vol. 362, no. 9400, pp. 1953–1958.

    Article  CAS  PubMed  Google Scholar 

  4. Warren, T.K., Warfield, K.L., Wells, J., Swenson, D.L., Donner, K.S., Van Tongeren, S.A., Garza, N.L., Dong, L., Mourich, D.V., Crumley, S., Nichols, D.K., Iversen, P.L., and Bavari, S., Advanced antisense therapies for postexposure protection against lethal filovirus infections, Nat. Med., 2010, vol. 16, no. 9, pp. 991–994.

    Article  CAS  PubMed  Google Scholar 

  5. Volchkov, V.E., Feldmann, H., Volchkova, V.A., and Klenk, H.D., Processing of the Ebola virus glycoprotein by the proprotein convertase furin, Proc. Natl. Acad. Sci. U. S. A., 1998, vol. 95, no. 10, pp. 5762–5767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee, J.E. and Saphire, EO., Ebolavirus glycoprotein structure and mechanism of entry, Future Virol., 2009, vol. 4, no. 6, pp. 621–635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jahrling, P.B., Geisbert, J.B., Swearengen, J.R., Larsen, T., and Geisbert, T.W., Ebola hemorrhagic fever: evaluation of passive immunotherapy in nonhuman primates, J. Infect. Dis., 2007, vol. 196, no. 2, pp. 400–S403.

    Article  Google Scholar 

  8. Parren, P.W., Geisbert, T.W., Maruyama, T., Jahrling, P.B., and Burton, D.R., Pre-and postexposure prophylaxis of Ebola virus infection in an animal model by passive transfer of a neutralizing human antibody, J. Virol., 2002, vol. 76, no. 12, pp. 6408–6412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oswald, W.B., Geisbert, T.W., Davis, K.J., Geisbert, J.B., Sullivan, N.J., Jahrling, P.B., Parren, P.W., and Burton, D.R., Neutralizing antibody fails to impact the course of Ebola virus infection in monkeys, PLoS Pathog., 2007, vol. 3, no. 1, p. e9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Olinger, G.G., Pettitt, J., Kim, D., et al., Delayed treatment of Ebola virus infection with plant-derived monoclonal antibodies provides protection in rhesus macaques, Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, no. 44, pp. 18030–18035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qiu, X., Audet, J., Wong, G., et al., Successful treatment of Ebola virus-infected cynomolgus macaques with monoclonal antibodies, Sci. Transl. Med., 2012, vol. 4, no. 138, p. 138ra81

    Google Scholar 

  12. Qiu, X., Wong, G., Audet, J., et al., Reversion of advanced Ebola virus disease in nonhuman primates with Zmapp, Nature, 2014, vol. 514, no. 7520, pp. 47–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sveshnikov, P. and Kiselev, V., Russian Patent PCT/RU2004/000373, 2004.

    Google Scholar 

  14. Kohler, G. and Milstein, C., Continuous cultures of fused cells secreting antibody of predefined specificity, Nature, 1975, vol. 256, no. 5517, pp. 495–497.

    Article  CAS  PubMed  Google Scholar 

  15. García-González, M., Bettinger, S., Ott, S., Olivier, P., Kadouche, J., and Pouletty, P., Purification of murine IgG3 and igM monoclonal antibodies by euglobulin precipitation, J. Immunol. Methods, 1988, vol. 111, no. 1, pp. 17–23.

    Article  PubMed  Google Scholar 

  16. Westwood, J. and Thomas, P., Studies on the structure and immunological activity of carcinoembryonic antigen—the role of disulphide bonds, Br. J. Cancer, 1975, vol. 32, no. 6, p. 708–719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nakane, P.K. and Kawaoi, A., Peroxidase-labeled antibody. A new method of conjugation, J. Histochem. Cytochem., 1974, vol. 22, no. 12, pp. 1084–1091.

    Article  CAS  PubMed  Google Scholar 

  18. Ponomarenko, J., Vaughan, K., Sette, A., and Maurer-Stroh, S., Conservancy of mAb epitopes in Ebolavirus glycoproteins of previous and 2014 outbreaks, PloS Curr., 2014, vol. 6.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Aliev.

Additional information

Original Russian Text © O.B. Schemchukova, I.G. Dement’yeva, N.E. Varlamov, L.P. Pozdnyakova, M.N. Bokov, T.K. Aliev, A.A. Panina, D.A. Dolgikh, M.P. Kirpichnikov, P.G. Sveshnikov, 2016, published in Vestnik Moskovskogo Universiteta. Biologiya, 2016, No. 1, pp. 29–34.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schemchukova, O.B., Dement’yeva, I.G., Varlamov, N.E. et al. Development and characterization of monoclonal antibodies to Ebola virus glycoprotein. Moscow Univ. Biol.Sci. Bull. 71, 24–28 (2016). https://doi.org/10.3103/S0096392516010090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392516010090

Keywords

Navigation