Skip to main content
Log in

Chimeric fab fragments of antibodies to recombinant Ebola virus glycoprotein

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Previously, we have determined the nucleotide and amino acid sequences of the variable domains of three mouse monoclonal antibodies specific to the individual epitopes of the Ebola virus glycoprotein: GPE118 (IgG), GPE325 (IgM) and GPE534 (IgG) [1]. In the present paper, chimeric Fab fragments of Fab118, Fab325, and Fab534 antibodies were obtained based on the variable domains of murine antibodies by attaching CH1 and CL constant regions of human kappa-IgG1 to them. The recombinant chimeric Fab fragments were synthesized in the heterologous expression system Escherichia coli, isolated and purified using metal chelate affinity chromatography. The immunochemical properties of the obtained Fab fragments were studied by immunoblotting techniques as well as indirect and competitive ELISA using recombinant Ebola virus proteins: EBOV rGPdTM (recombinant glycoprotein of Ebola hemorrhagic fever virus without the transmembrane domain), NP (nucleoprotein) and VP40 (structural protein). The identity of recombinant chimeric Fab fragments, as well as their specificity to the recombinant glycoprotein of Ebola hemorrhagic fever virus (EBOV GP) was proved. The results of indirect ELISA evidence the absence of immunological cross-reactivity to NP and VP40 proteins of Ebola virus. The dissociation constants of the antigen-antibody complex K d equal to 5.0, 1.0 and 1.0 nM for Fab118, Fab325 and Fab534, respectively, were determined; they indicate high affinity of the obtained experimental samples to EBOV GP. The epitope specificity of Fab fragments was studied using a panel of commercial neutralizing antibodies. It was found that all studied antibodies to EBOV GP are targeted to different epitopes, while the epitopes of the recombinant chimeric Fab fragments and original murine monoclonal antibodies (mAbs) coincide. All the obtained and studied mAbs to EBOV GP are specific to epitopes that coincide or overlap the epitopes of three commercial neutralizing mAbs to Ebola virus: epitopes Fab118 and Fab325 overlap the epitope of the known commercial mAb h13F6; Fab325 epitope also overlaps mAb c6D8 epitope; Fab534 epitope is located near mAb KZ52 conformational epitope, in the formation of which amino acid residues of GP1 and GP2 domains of EBOV GP are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

mAB:

monoclonal antibodies

Fab-fragment:

antigen-binding fragment of an antibody

NP:

viral nucleoprotein

VP40:

structural protein of Ebola virus

EBOV:

Ebola virus

EBOV GP:

glycoprotein of the Ebola virus

rGPdTM:

recombinant glycoprotein of the Ebola virus lacking the transmembrane domain

SOE-PCR:

PCR with splicing by overlap extension

IEDB:

International Epitope Database

K d :

dissociation constant

PBS:

phosphate-buffered saline

References

  1. Panina, A.A., Aliev, T.K., Shemchukova, O.B., Dement’eva, I.G., Varlamov, N.E., Pozdnyakova, L.P., Bokov, M.N., Dolgikh, D.A., Sveshnikov, P.G., and Kirpichnikov, M.P., Dokl. Biochem. Biophys., 2016, vol. 467, pp. 117–120.

    Article  CAS  PubMed  Google Scholar 

  2. Olinger, G.G.,Jr., Pettitt, J., Do, K., Working, C., Bohorov, O., Bratcher, B., Hiatt, E., Hume, S., Johnson, A., Morton, J., Pauly, M., Whaley, K., Lear, C., Biggins, J., Scully, C., Hensley, L., and Zeitlin, L., Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, no. 44, pp. 18030–18035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Qiu, X., Audet, J., Wong, G., Pillet, S., Bello, A., Cabra, T., Strong, J.E., Plummer, F., Corbett, C.R., Alimonti, J.B., and Kobinger, G.P., Sci. Transl. Med., 2012, vol. 4, no. 138, p. 138ra81. doi 10.1126/scitranslmed. 3003876

    Article  Google Scholar 

  4. Qiu, X., Wong, G., Audet, J., Bello, A., Fernando, L., Alimonti, J.B., Fausther-Bovendo, H., Wei, H., Aviles, J., Hiatt, E., Johnson, A., Morton, J., Swope, K., Bohorov, O., Bohorova, N., Goodman, C., Kim, D., Pauly, M.H., Velasco, J., Pettitt, J., Olinger, G.G., Whaley, K., Xu, B., Strong, J.E., and Zeitlin, L., Nature, 2014, vol. 514, no. 7520, p. 1038.

    Article  Google Scholar 

  5. Shemchukova, O.B., Dement’yeva, I.G., Varlamov, N.E., Pozdnyakova, L.P., Bokov, M.N., Aliev, T.K., Panina, A.A., Dolgikh, D.A., Kirpichnikov, M.P., and Sveshnikov, P.G., Moscow Univ. Biol. Sci. Bull., 2016, vol. 71, no. 1, pp. 24–28.

    Article  Google Scholar 

  6. Deyev, S.M., Lebedenko, E.N., Petrovskaya, L.E., Dolgikh, D.A., Gabibov, A.G., and Kirpichnikov, M.P., Russ. Chem. Rev., 2015, vol. 84, no. 1, pp. 1–26.

    Article  CAS  Google Scholar 

  7. Horton, R.M., Hunt, H.D., Ho, S.N., Pullen, J.K., and Pease, L.R., Gene, 1989, vol. 77, pp. 61–68.

    Article  CAS  PubMed  Google Scholar 

  8. Lauer, B., Ottleben, I., Jacobsen, H.J., and Reinard, T., J. Agric Food Chem., 2005, vol. 53, no. 4, pp. 899–904.

    Article  CAS  PubMed  Google Scholar 

  9. Mi, J., Yan, J., Guo, Z., Zhao, M., and Chang, W., Anal. Bioanal. Chem., 2005, vol. 383, no. 2, pp. 218–223.

    Article  CAS  PubMed  Google Scholar 

  10. Laemmli, U.K., Nature, 1970, vol. 227, no. 5259, pp. 680–685.

    Article  CAS  PubMed  Google Scholar 

  11. Towbin, H., Staehelin, T., and Gordon, J., Proc. Natl. Acad. Sci. U. S. A., 1979, vol. 76, pp. 4350–4354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Friguet, B., Chaffotte, A.F., Djavadi-Ohaniance, L., and Goldberg, M.E., J. Immunol. Methods, 1985, vol. 77, no. 2, pp. 305–319.

    Article  CAS  PubMed  Google Scholar 

  13. Klotz, I.M., Arch. Biochem., 1946, vol. 9, pp. 109–117.

    CAS  PubMed  Google Scholar 

  14. Ponomarenko, J., Vaughan, K., Sette, A., and Maurer- Stroh, S., PLoS Currents, 2014, vol. 6. ecurrents.outbreaks. f1a7028a13ce1c5f0bdbb4b0cc0b919b

  15. Studier, F.W., Prot. Expr. Purif., 2006, vol. 41, pp. 207–234.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Panina.

Additional information

Original Russian Text © A.A. Panina, I.G. Dement’yeva, T.K. Aliev, V.A. Toporova, M.N. Bokov, L.P. Pozdnyakova, O.B. Shemchukova, D.A. Dolgikh, P.G. Sveshnikov, M.P. Kirpichnikov, 2017, published in Bioorganicheskaya Khimiya, 2017, Vol. 43, No. 4, pp. 389–401.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panina, A.A., Dement’yeva, I.G., Aliev, T.K. et al. Chimeric fab fragments of antibodies to recombinant Ebola virus glycoprotein. Russ J Bioorg Chem 43, 409–420 (2017). https://doi.org/10.1134/S1068162017040069

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162017040069

Keywords

Navigation