Skip to main content
Log in

Pattern of RAD51-G135C Polymorphism among Eastern Mediterranean Turkish Population and Association with Breast Cancer

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The RAD51 gene encodes proteins that are important for the repair of double-strand DNA breaks by recombination. Thus, genetic variability in the gene may contribute to the occurrence and progression of breast carcinoma. We investigated the association of polymorphisms in the DNA repair genes RAD51-site 135G/C with the breast cancer risk. Genotypes were determined by PCR-RFLP assays in 55 female patients with breast cancers and 80 age-matched healthy controls. Bloods samples were taken from all the patients and health controls and DNA was isolated. The region of interest was amplified based on PCR. After amplification, we used a restriction enzyme (RAD51; MvaI) and digested the PCR product. Then, these DNA fragments were size separated in gel electrophoresis. We identified changes in the nucleotides in these specific regions and confirmed the genotyping via sequencing a subset of PCR products using an Applied Biosystems Automated Sequencer. We observed that both allele and genotype frequencies significantly differed between breast cancer patients and healthy control. The frequency of variant allele, C, was increased to 0.25 in breast cancer group as opposed to the frequency of 0.125 in control group. Similarly, the genotypes carrying the variant allele C (CC + GC) had an elevated frequency and increased odd’s ratio among breast cancer group. The obtained results indicate that the polymorphism of RAD51 genes may be associated with the incidence of breast cancer in the Eastern Mediterranean region population. We hypothesized that common polymorphisms in DNA repair and cell cycle regulator genes modify DNA repair machinery which contribute to breast cancer susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Akisik, E., Yazici, H., and Dalay, N., ARLTS1, MDM2 and RAD51 gene variations are associated with familial breast cancer, Mol. Biol. Rep., 2011, vol. 38, pp. 343–348. https://doi.org/10.1007/s11033-010-0113-3

    Article  CAS  PubMed  Google Scholar 

  2. Antoniou, A.C., Sinilnikova, O.M., Simard, J., et al., RAD51 135G→C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies, Am. J. Hum. Genet., 2007, vol. 81, pp. 1186–1200. https://doi.org/10.1086/522611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bennett, I.C., Gattas, M., and Teh, B.T., The genetic basis of breast cancer and its clinical implications, Aust. N. Z. J. Surg., 1999, vol. 69, pp. 95–105. https://doi.org/10.1046/j.1440-1622.1999.01515.x

    Article  CAS  PubMed  Google Scholar 

  4. Bray, F., Ferlay, J., Soerjomataram, I., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin., 2018, vol. 68, pp. 394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  5. Cetinkunar, S., Gok, I., Celep, R.B., et al., The effect of polymorphism in DNA repair genes RAD51 and XRCC2 in colorectal cancer in Turkish population, Int. J. Clin. Exp. Med., 2015, vol. 8, p. 2649.

    Google Scholar 

  6. Cheng, D., Shi, H., Zhang, K., et al., RAD 51 gene 135G/C polymorphism and the risk of four types of common cancers: a meta-analysis, Diagn. Pathol., 2014, vol. 9, p. 18.

    Article  Google Scholar 

  7. Coskun, T., Kosova, F., Ari, Z., et al., Effect of oncological treatment on serum adipocytokine levels in patients with stage II-III breast cancer, Mol. Clin. Oncol., 2016, vol. 4, pp. 893–889. https://doi.org/10.3892/mco.2016.8157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Debies, M.T. and Welch, D.R., Genetic basis of human breast cancer metastasis, J. Mammary Gland Biol. Neoplasia, 2001, vol. 6, pp. 441–451.

    Article  CAS  Google Scholar 

  9. Galkin, V.E., Esashi, F., Yu, X., et al., BRCA2 BRC motifs bind RAD51–DNA filaments, Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, pp. 8537–8542. https://doi.org/10.1073/pnas.0407266102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gao, L.-B., Pan, X.-M., Li, L.-J., et al., RAD51 135G/C polymorphism and breast cancer risk: a meta-analysis from 21 studies, Breast Cancer Res. Treat., 2011, vol. 125, pp. 827–835.

    Article  CAS  Google Scholar 

  11. Gok, I. and Ozden, O., Examination of RAD51 gene G135C polymorphism in gastric cancer patients in northeastern Anatolia, Arch. Biol. Sci., 2019, vol. 71, pp. 209–213. https://doi.org/10.2298/ABS181121002G

    Article  Google Scholar 

  12. Gok, I., Ucar, F., Ozgur, O., et al., CARD15 gene 3020insC mutation with inflammatory bowel diseases patients in the black sea region of Turkey, Maced. J. Med. Sci., 2014, vol. 7, pp. 215–218. https://doi.org/10.3889/mjms.1857-5773.2014.0406

    Article  CAS  Google Scholar 

  13. Gonzalez, R., Silva, J.M., Dominguez, G., et al., Detection of loss of heterozygosity at RAD51, RAD52, RAD54 and BRCA1 and BRCA2 loci in breast cancer: pathological correlations, Br. J. Cancer, 1999, vol. 81, p. 503.

    Article  CAS  Google Scholar 

  14. Gültekin, M. and Boztaş, G., TüRkiye Kanser Istatistikleri, Sağlık Bakanl Türkiye Halk Sağlığı Kurumu, 2014, 43 p.

    Google Scholar 

  15. Krupa, R., Sliwinski, T., Wisniewska-Jarosinska, M., et al., Polymorphisms in RAD51, XRCC2 and XRCC3 genes of the homologous recombination repair in colorectal cancer—a case control study, Mol. Biol. Rep., 2011, vol. 38, pp. 2849–2854. https://doi.org/10.1007/s11033-010-0430-6

    Article  CAS  PubMed  Google Scholar 

  16. Nissar, S., Baba, S.M., Akhtar, T., et al., RAD51 G135C gene polymorphism and risk of colorectal cancer in Kashmir, Eur. J. Cancer Prev., 2014, vol. 23, pp. 264–268. https://doi.org/10.1097/CEJ.0000000000000049

    Article  CAS  PubMed  Google Scholar 

  17. Pharoah, P.D., Dunning, A.M., Ponder, B.A., et al., Association studies for finding cancer- susceptibility genetic variants, Nat. Rev. Cancer, 2004, vol. 4, p. 850.

    Article  CAS  Google Scholar 

  18. Richardson, C., RAD51, genomic stability, and tumorigenesis, Cancer Lett., 2005, vol. 218, pp. 127–213.https://doi.org/10.1016/j.canlet.2004.08.0099

    Article  CAS  PubMed  Google Scholar 

  19. Romanowicz-Makowska, H., Samulak, D., Michalska, M., et al., RAD51 gene polymorphisms and sporadic colorectal cancer risk in Poland, Pol. J. Pathol., 2012, vol. 63, pp. 193–198. https://doi.org/10.5114/PJP.2012.31505

    Article  CAS  PubMed  Google Scholar 

  20. Shimizu, H., Ross, R.K., Bernstein, L., et al., Cancers of the prostate and breast among Japanese and white immigrants in Los Angeles County, Br. J. Cancer, 1991, vol. 63, p. 963. https://doi.org/10.1038/bjc.1991.210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Smith, C.A.B., Measures of homozygosity and inbreeding in populations, Ann. Hum. Genet., 1974, vol. 37, pp. 377–391. https://doi.org/10.1111/j.1469-1809.1974.tb01844.x

    Article  CAS  PubMed  Google Scholar 

  22. Society AC, Breast Cancer Facts and Figures 2017–2018, American Cancer Society Atlanta, GA, 2017.

    Google Scholar 

  23. Stratton, M.R. and Rahman, N., The emerging landscape of breast cancer susceptibility, Nat. Genet., 2008, vol. 40, p. 17.https://doi.org/10.1038/ng.2007.53

    Article  CAS  PubMed  Google Scholar 

  24. Wang, W.W., Spurdle, A.B., Kolachana, P., et al., A single nucleotide polymorphism in the 5′ untranslated region of RAD51 and risk of cancer among BRCA1/2 mutation carriers, Cancer Epidemiol. Prev. Biomark., 2001, vol. 10, pp. 955–960.

    CAS  Google Scholar 

  25. Wick, W., Petersen, I., Schmutzler, R.K., et al., Evidence for a novel tumor suppressor gene on chromosome 15 associated with progression to a metastatic stage in breast cancer, Oncogene, 1996, vol. 12, pp. 973–978.

    CAS  PubMed  Google Scholar 

  26. Wu, S., Powers, S., Zhu, W., et al., Substantial contribution of extrinsic risk factors to cancer development, Nature, 2016, vol. 529, p. 43.

    Article  CAS  Google Scholar 

  27. Yoshikawa, K., Ogawa, T., Baer, R., et al., Abnormal expression of BRCA1 and BRCA1-interactive DNA-repair proteins in breast carcinomas, Int. J. Cancer, 2000, vol. 88, pp. 28–36. https://doi.org/10.1002/1097-0215(20001001)88:1<28::AID-IJC5>3.0.CO;2-4

    Article  CAS  PubMed  Google Scholar 

  28. Zabaleta, J., Schneider, B.G., Ryckman, K., et al., Ethnic differences in cytokine gene polymorphisms: potential implications for cancer development, Cancer Immunol. Immunother., 2008, vol. 57, pp. 107–114. https://doi.org/10.1007/s00262-007-0358-4

    Article  CAS  PubMed  Google Scholar 

  29. Zhou, G.-W., Hu, J., Peng, X.-D., et al., RAD51 135G>C polymorphism and breast cancer risk: a meta-analysis, Breast Cancer Res. Treat., 2011, vol. 125, pp. 529–535. https://doi.org/10.1007/s10549-010-1031-8

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We would like to thank Kafkas University Scientific Research Project Directory (Project no. MMF-61/63) for supporting the current study.

Author information

Authors and Affiliations

Authors

Contributions

IG and SC performed the experiments, wrote and revised the paper. All authors read and approved the manuscript.

Corresponding author

Correspondence to Ilhami Gok.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. Prior to the research, the ethics committee approval was obtained from Kafkas University Medical Faculty, the Local Ethics Committee (no. B.30.2.ATA.0.01.00/53). Participants were informed about the process and “informed voluntary consent form” were obtained from all the participants.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilhami Gok, Süleyman Cetinkunar Pattern of RAD51-G135C Polymorphism among Eastern Mediterranean Turkish Population and Association with Breast Cancer. Cytol. Genet. 55, 171–176 (2021). https://doi.org/10.3103/S0095452721020043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452721020043

Keywords:

Navigation