Skip to main content
Log in

Adaptive Evolution for the Improvement of Ethanol Production During Alcoholic Fermentation with the Industrial Strains of Yeast Saccharomyces Cerevisiae

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract—Ethanol is one of the most important biotechnological compounds widely used in medicine, pharmacology, food and fuel, cosmetology, and other fields. The main method for ethanol production is alcoholic fermentation using baker’s yeast Saccharomyces cerevisiae. S. cerevisiae converts glucose into ethanol very efficiently: ethanol yield is more than 90% of the theoretical maximum. However, even a slight increase in ethanol yield in an industrial-scale alcoholic fermentation can produce an additional 100 million t of ethanol each year. In this study, the method of adaptive evolution was used to increase the production of ethanol with industrial S. cerevisiae strains: yeast cells were exposed to long-term cultivation on the medium with high concentrations of glucose and ethanol. Most of the adapted strains obtained were characterized by increased ethanol production during alcoholic fermentation in comparison with the original strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Dmytruk K.V., Kurylenko O.O., Ruchala J., Abbas, C.A., and Sibirny A.A. Genetic Improvement of Conventional and Nonconventional Yeasts for the Production of First- and Second-Generation Ethanol, Springer International Publishing, 2017. https://doi.org/10.1007/978-3-319-58829-2_1

    Book  Google Scholar 

  2. Basso, L.C. Basso, T.O., and Rocha, S.N., Ethanol Production in Brazil: The Industrial Process and Its Impact on Yeast Fermentation, InTech, 2011.

    Google Scholar 

  3. Hahn-Hagerdal, B., Galbe, M., Gorwa-Grauslund, M.F., Liden, G., and Zacchi, G., Bio-ethanol—the fuel of tomorrow from the residues of today, Trends Biotechnol., 2006, vol. 24, no. 12, pp. 549–556. https://doi.org/10.1016/j.tibtech.2006.10.004

    Article  CAS  PubMed  Google Scholar 

  4. Dos Santos, M.A., Energy Analysis of Crops Used for Producing Ethanol and CO2 Emissions, The International Virtual Institute of Global Change (IVIG), 1997.

  5. Douglas Crabb, W. and Mitchinson, C., Enzymes involved in the processing of starch to sugars, Trends Biotechnol., 1997, vol. 15, pp. 349–352. https://doi.org/10.1016/S0167-7799(97)01082-2

    Article  Google Scholar 

  6. Madson, P.W. and Monceaux D.A., Fuel Ethanol Production, Nottingham: University Press, 1999.

    Google Scholar 

  7. Guo, Z.P., Zhang, L. Ding, Z.Y., and Shi, G.Y., Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance, Metab. Eng., 2011, vol. 13, no. 1, pp. 49–59. https://doi.org/10.1016/j.ymben.2010.11.003

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, L., Tang, Y., Guo, Z.P., Ding, Z.Y., and Shi, G.Y., Improving the ethanol yield by reducing glycerol formation using cofactor regulation in Saccharomyces cerevisiae,Biotechnol. Lett., 2011, vol. 33, no. 7, pp. 1375–1380. https://doi.org/10.1007/s10529-011-0588-6

    Article  CAS  PubMed  Google Scholar 

  9. Semkiv, M.V., Dmytruk, K.V., Abbas, C.A., and Sibirny, A.A., Increased ethanol accumulation from glucose via reduction of ATP level in a recombinant strain of Saccharomyces cerevisiae overexpressing alkaline phosphatase, BMC Biotechnol., 2014, vol. 14, p. 42. https://doi.org/10.1186/1472-6750-14-42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Semkiv, M.V., Dmytruk, K.V., Abbas, C.A., and Sibirny, A.A., Activation of futile cycles as an approach to increase ethanol yield during glucose fermentation in Saccharomyces cerevisiae, Bioengineered, 2016, vol. 7, no. 2, pp. 106–111. https://doi.org/10.1080/21655979.2016.1148223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grossmann, M., Kießling, F., Singer, J., Schoeman, H., Schröder, M.-B., and von Wallbrunn, C., Genetically modified wine yeasts and risk assessment studies covering different steps within the wine making process, Ann. Microbiol., 2011, vol. 61, no. 1, pp. 103–115. https://doi.org/10.1007/s13213-010-0088-2

    Article  CAS  Google Scholar 

  12. Chambers, P.J., Bellon, J.R., Schmidt, S.A., Varela, C., and Pretorius, I.S., Non-Genetic Engineering Approaches for Isolating and Generating Novel Yeasts for Industrial Applications, Springer Netherlands, 2009. https://doi.org/10.1007/978-1-4020-8292-4_20

    Book  Google Scholar 

  13. Cakar, Z.P., Seker, U.O., Tamerler, C., Sonderegger, M., and Sauer, U., Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae,FEMS Yeast Res., 2005, vol. 5, no. 6–7, pp. 569–578. https://doi.org/10.1016/j.femsyr.2004.10.010

    Article  CAS  PubMed  Google Scholar 

  14. Kuyper, M., Toirkens, M.J., Diderich, J.A., Winkler, A.A., van Dijken, J.P., and Pronk, J.T., Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain, FEMS Yeast Res., 2005, vol. 5, no. 10, pp. 925–934. https://doi.org/10.1016/j.femsyr.2005.04.004

    Article  CAS  PubMed  Google Scholar 

  15. Higgins, V.J., Bell, P.J., Dawes, I.W., and Attfield, P.V., Generation of a novel Saccharomyces cerevisiae strain that exhibits strong maltose utilization and hyperosmotic resistance using nonrecombinant techniques, App. Environ. Microbiol., 2001, vol. 67, no. 9, pp. 4346–4348. https://doi.org/10.1128/AEM.67.9.4346-4348.2001

    Article  CAS  Google Scholar 

  16. Dmytruk K.V., Kshanovska, B.V., Abbas, C.A., and Sibirny, A.A., New methods for positive selection of yeast ethanol overproducing mutants, Bioethanol, 2016, vol. 2, pp. 24–31. https://doi.org/10.1515/bioeth-2015-0003

    Article  CAS  Google Scholar 

  17. de Oliva-Neto, P., Dorta, C., Carvalho, A.F., de Lima, V.M.G., and da Silva, D.F., The Brazilian Technology of Fuel Ethanol Fermentation—Yeast Inhibition Factors and New Perspectives to Improve the Technology, ©FORMATEX, 2013.

  18. Chapman, C. and Bartley, W., The kinetics of enzyme changes in yeast under conditions that cause the loss of mitochondria, Biochem. J., 1968, vol. 107, no. 4, pp. 455–465. https://doi.org/10.1042/bj1070455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Beaven, M.J., Charpentier, C., and Rose, A.H., Production and tolerance of ethanol in relation to phospholipid fatty-acyl composition in Saccharomyces cerevisiae NCYC 431, Microbiology, 1982, vol. 128, no. 7, pp. 1447–1455. https://doi.org/10.1099/00221287-128-7-1447

    Article  CAS  Google Scholar 

  20. Millar, D.G., Griffiths-Smith, K., Algar, E., and Scopes, R.K., Activity and stability of glycolytic enzymes in the presence of ethanol, Biotechnol. Lett., 1982, vol. 4, no. 9, pp. 601–606. https://doi.org/10.1007/BF00127792

    Article  CAS  Google Scholar 

  21. Loureiro-Dias, M.C. and Peinado, J.M., Effect of ethanol and other alkanols on the maltose transport system of Saccharomyces cerevisiae,Biotechnol. Lett., 1982, vol. 4, no. 11, pp. 721–724. https://doi.org/10.1007/BF00-134666

    Article  CAS  Google Scholar 

  22. Ingram, L.O., Adaptation of membrane lipids to alcohols, J. Bacteriol., 1976, vol. 125, no. 2, pp. 670–678. PMCID: PMC236128.

    Article  CAS  Google Scholar 

  23. Moon, M.H., Ryu, J., Choeng, Y.-H., Hong, S.-K., Kang, H.A., and Chang, Y.K., Enhancement of stress tolerance and ethanol production in Saccharomyces cerevisiae by heterologous expression of a trehalose biosynthetic gene from Streptomyces albus,Biotechnol. Bioproc. Eng., 2012, vol. 17, no. 5, pp. 986–996. https://doi.org/10.1007/s12257-012-0148-5

    Article  CAS  Google Scholar 

  24. Qiu, Z. and Jiang, R., Improving Saccharomyces cerevisiae ethanol production and tolerance via RNA polymerase II subunit Rpb7, Biotechnol. Biof., 2017, vol. 10, p. 125. https://doi.org/10.1186/s13068-017-0806-0

    Article  CAS  Google Scholar 

  25. Jung, Y.J. and Park, H.D., Antisense-mediated inhibition of acid trehalase (ATH1) gene expression promotes ethanol fermentation and tolerance in Saccharomyces cerevisiae,Biotechnol. Lett., 2005, vol. 27, nos. 23–24, pp. 1855–1859. https://doi.org/10.1007/s10529-005-3910-3

    Article  CAS  PubMed  Google Scholar 

  26. Cao, T.S., Chi, Z., Liu, G.L., and Chi, Z.M., Expression of TPS1 gene from Saccharomycopsis fibuligera A11 in Saccharomyces sp. W0 enhances trehalose accumulation, ethanol tolerance, and ethanol production, Mol. Biotechnol., 2014, vol. 56, no. 1, pp. 72–78. https://doi.org/10.1007/s12033-013-9683-3

    Article  CAS  PubMed  Google Scholar 

  27. Thammasittirong, S.N.-R., Thirasaktana, T., Thammasittirong, A., and Srisodsuk, M., Improvement of Ethanol Production by Ethanol-Tolerant Saccharomyces cerevisiae UVNR56, SpringerPlus, 2013. https://doi.org/10.1186/2193-1801-2-583

  28. Argueso, J.L., Carazzolle, M.F., Mieczkowski, P.A., Duarte, F.M., Netto, O.V. Missawa, S.K., Galzerani, F., Costa, G.G., Vidal, R.O., Noronha, M.F., Dominska, M., Andrietta, M.G., Andrietta, S.R., Cunha, A.F., Gomes, L.H., Tavares, F.C., Alcarde, A.R., Dietrich, F.S., McCusker, J.H., Petes, T.D., and Pereira, G.A., Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production, Genome Res., 2009, vol. 19, no. 12, pp. 2258–2270. https://doi.org/10.1101/gr.091777.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin, Y. and Tanaka, S., Ethanol fermentation from biomass resources: current state and prospects, Appl. Microbiol. Biotechnol., 2006, vol. 69, no. 6, pp. 627–642. https://doi.org/10.1007/s00253-005-0229-x

    Article  CAS  PubMed  Google Scholar 

  30. Esteve-Zarzoso, B., Belloch, C., Uruburu, F., and Querol, A., Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers, Int. J. Syst. Bacteriol., 1999, vol. 49, no. 1, pp. 329–337. https://doi.org/10.1099/00207713-49-1-329

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Academy of Sciences of Ukraine (scientific and technical project of the National Academy of Sciences of Ukraine no. 44-18 Development of Ethyl Alcohol Technology Based on Designed Alcoholic Yeast Strains Capable of Overproduction of Ethanol).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sibirny.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by V. Mittova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zazulya, A., Semkiv, M., Dmytruk, K. et al. Adaptive Evolution for the Improvement of Ethanol Production During Alcoholic Fermentation with the Industrial Strains of Yeast Saccharomyces Cerevisiae . Cytol. Genet. 54, 398–407 (2020). https://doi.org/10.3103/S0095452720050059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452720050059

Navigation