Skip to main content
Log in

Cytotoxic effects of metaphase-arresting methods in barley

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Metaphase-arresting agents amiprophos-methyl (APM), colchicine (COL) and cell cycle-synchronization (CCS) with APM and hydroxyurea (HU) were tested for growth, metaphase index and cytogenetic abnomalities in barley (Hordeum vulgare cv. Bornova-92). Seeds were germinated for 2 days and then seedlings were treated with 8 μM (2.4 mg/L) APM for 2 h or 1.25 mM (0.5 g/L) COL or synchronized (CCS) with 1.25 mM (95 mg/L) hydroxyurea for 18 h and with 4 μM (1.2 mg/L) APM for 2 h. APM and CCS caused metaphase indices 12.57 and 38.82% respectively. COL also arrested metaphase (14.10%) but also resulted in nuclear aberrations (11.15%). After removal of APM and CCS, cells were released to grow and divide. However, COL caused irreversible effects on cell division and growth and meanwhile was shown to be effective for micronucleus formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altinkut, A. and Gozukirmizi, N., Critical points of fish for the localization of single and low copy sequences in plant chromosomes, Biotechnol. Biotechnol. Equip., 2001, vol. 15, pp. 23–27.

    Article  Google Scholar 

  2. Verhoeven, H.A., Sree, RamuluK., and Dijkhuis, P., A comparison of the effects of various spindle toxins on metaphase arrest and formation of micronuclei in cellsuspension cultures of Nicotiana plumbaginifolia, Planta, 1990, vol. 182, no. 3, pp. 408–414.

    Article  CAS  PubMed  Google Scholar 

  3. Singh, R.J., Plant Cytogenetics, Florida: CRC Press, 2003.

    Google Scholar 

  4. Dolezel, J., Cihalikova, J., Weiserova, J., and Lucretti, S., Cell cycle synchronization in plant root meristems, Meth. Cell Sci, 1999. vol. 21, nos. 2/3, pp. 95–107.

    Article  CAS  Google Scholar 

  5. Caperta, A.D., Delgado, M., Ressurreicao, F., et al., Colchicine-induced polyploidization depends on tubulin polymerization in C-metaphase cells, Protoplasma, 2006. vol. 227, nos 2/4, pp. 147–153.

    Article  CAS  PubMed  Google Scholar 

  6. Hantzschel, K.R. and Weber, G., Blockage of mitosis in maize root tips using colchicine-alternatives, Protoplasma, 2010. vol. 241, nos. 1/4, pp. 99–104.

    Article  CAS  PubMed  Google Scholar 

  7. Wu, J.H., Ferguson, A.R., and Murray, B.G., Manipulation of ploidy for kiwifruit breeding: in vitro chromosome doubling in diploid Actinidia chinensis Planch, Plant Cell Tissue Organ Cult., 2011, vol. 106, no. 3, pp. 503–511.

    Article  CAS  Google Scholar 

  8. Morejohn, L.C. and Fosket, D.E., Taxol-induced rose microtubule polymerization in vitro and its inhibition by colchicine, J. Cell Biol., 1984, vol. 99, pp. 141–147.

    Article  CAS  PubMed  Google Scholar 

  9. Dhooghe, E., van Laere, K., Eeckhaut, T., et al., Mitotic chromosome doubling of plant tissues in vitro, Plant Cell Tissue Organ Cult., 2011, vol. 104, no. 3, pp. 359–373.

    Article  Google Scholar 

  10. Hansen, N.J.P. and Andersen, S.B., In vitro chromosome doubling potential of colchicine, oryzalin, trifluralin and APM in Brassica napus microspore culture, Euphytica, 1996, vol. 88, no. 2, pp. 159–164.

    Article  CAS  Google Scholar 

  11. Hansen, A.L., Gertz, A., Joersbo, M., and Andersen, S.B., Antimicrotubule herbicides for in vitro chromosome doubling in Beta vulgaris L. ovule culture, Euphytica, 1998, vol. 101, no. 2, pp. 231–237.

    Article  CAS  Google Scholar 

  12. Jakse, M., Havey, M.J., and Bohanec, B., Chromosome doubling procedures of onion (Allium cepa L.) gynogenic embryos, Plant Cell Rep., 2003, vol. 21, no. 9, pp. 905–910.

    CAS  PubMed  Google Scholar 

  13. Sree, RamuluK., Verhoeven, H.A., and Dijkhuis, P., Mitotic dynamics of micronuclei induced by amiprophosmethyl and prospects for chromosome-mediated gene transfer in plants, Theor. Appl. Genet., 1988, vol. 75, no. 4, pp. 575–584.

    Article  Google Scholar 

  14. Carvalho, C.R., Clarindo, W.R., Praca, M.M., et al., Genome size, base composition and karyotype of Jatropha curcas L., an important biofuel plant, Plant Sci., 2008, vol. 174, no. 6, pp. 613–617.

    Article  CAS  Google Scholar 

  15. Young, C.W. and Hodas, S., Hydroxyurea: inhibitory effect on DNA metabolism, Science, 1964, vol. 146, no. 3648, pp. 1172–1174.

    Article  CAS  PubMed  Google Scholar 

  16. Dolezel, J., Cihalikova, J., and Lucretti, S., A high yield procedure for isolation of metaphase chromosomes from root tips of Vicia faba, Planta, 1992, vol. 188, no. 1, pp. 93–98.

    Article  CAS  PubMed  Google Scholar 

  17. Pan, W.H., Houben, A., and Schlegel, R., Highly effective cell synchronization in plant roots by hydroxyurea and amiprophos-methyl or colchicine, Genome, 1993, vol. 36, no. 2, pp. 387–390.

    Article  CAS  PubMed  Google Scholar 

  18. Nonaka, T., Oka, E., Asano, M., et al., Chromosome doubling of Lychnis spp. by in vitro spindle toxin treatment of nodal segments, Sci. Hort., 2011, vol. 129, no. 4, pp. 832–839.

    Article  CAS  Google Scholar 

  19. Rodrigues, F.A., Soares, J.D.R., Santos, R.R., et al., Colchicine and amiprophos-methyl (APM) in polyploidy induction in banana plant, Afr. J. Biotech., 2011, vol. 10, no. 62, pp. 13476–13481.

    CAS  Google Scholar 

  20. Tchorbadjeva, M.I. and Pantchev, I.Y., DNA methylation and somatic embryogenesis of orchardgrass (Dactylis gloverata L.), Bulg. J. Plant Physiol., 2004. vol. 30, nos. 1/2, pp. 3–13.

    Google Scholar 

  21. Puigderrajols, P., Jofre, A., Mir, G., et al., Developmentally and stress-induced small heat shock proteins in cork oak somatic embryos, J. Exp. Bot., 2002, vol. 53, no. 373, pp. 1445–1452.

    Article  CAS  PubMed  Google Scholar 

  22. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 1976. vol. 72, nos. 1/2, pp. 48–54.

    Article  Google Scholar 

  23. Tkalec, M., Malaric, K., Pavlica, M., et al., Effects of radiofrequency electromagnetic fields on seed germination and root meristematic cells of Allium cepa L., Mutat. Res., 2009, vol. 672, no. 2, pp. 76–81.

    Article  CAS  PubMed  Google Scholar 

  24. Sree, RamuluK., Verhoeven, H.A., and Dijkhuis, P., Mitotic blocking, micronucleation, and chromosome doubling by oryzalin, amiprophos-methyl, and colchicine in potato, Protoplsama, 1991. vol. 160, nos. 2/3, pp. 5–71.

    Article  Google Scholar 

  25. Lee, J.H., Arumuganathan, K., Chung, Y.S., et al., Flow cytometric analysis and chromosome sorting of barley (Hordeum vulgare L.), Mol. Cells, 2000, vol. 10, no. 6, pp. 619–625.

    Article  CAS  PubMed  Google Scholar 

  26. Grosso, V., Farina, A., Gennaro, A., et al., Flow sorting and molecular cytogenetic identification of individual chromosomes of Dasypyrum villosum L. (H. villosa) by a single DNA probe, PLoS One, 2012. vol. 7, no. 11, p. e50151.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Lee, J.H., Arumuganathan, K., Kaeppler, S.M., et al., Cell synchronization and isolation of metaphase chromosomes from maize (Zea mays L.) root tips for flow cytometric analysis and sorting, Genome, 1996, vol. 39, no. 4, pp. 697–703.

    Article  CAS  PubMed  Google Scholar 

  28. Falconer, M.M. and Seagull, R.W., Amiprophosmethyl (APM): a rapid, reversible, anti-microtubule agent for plant cell cultures, Protoplasma, 1987. vol. 163, nos 2/3, pp. 1148–1124.

    Google Scholar 

  29. Mara, C., Dempsey, E., Bell, A., and Barlow, J.W., Synthesis and evaluation of phosphoramidate and phosphorothioamidate analogues of amiprophos methyl as potential antimalarial agents, Bioorg. Med. Chem. Lett., 2011, vol. 21, no. 20, pp. 6180–6183.

    Article  CAS  PubMed  Google Scholar 

  30. Yemets, A.I., Strashnyuk, N.M., and Blume, Y.B., Plant mutants and somatic hybrids with resistance to trifluralin, Cell Biol. Int., 1997, vol. 21, no. 12, pp. 912–914.

    Google Scholar 

  31. Ozheredov, S.P., Yemets, A.I., Brytsun, V.M., et al., Screening of new 2,4 and 2,6-dinitroaniline derivates for phytotoxicity and antimitotic activity, Cytol. Genet., 2009, vol. 43, no. 5, pp. 297–304.

    Article  Google Scholar 

  32. Sree, RamuluK., Verhoeven, H.A., Dijkhuis, P., and Gilissen, L.J.W., Chromosome behaviour and formation of micronuclei after treatment of cell suspension cultures with amiprophos-methyl in various plant species, Plant Sci., 1988, vol. 56, no. 3, pp. 227–237.

    Article  Google Scholar 

  33. Lakshmanan, P.S., Eeckhaut, T., van Huylenbroeck, J., and van Bockstaele, E., Micronucleation by mitosis inhibitors in developing microspores of Spathiphyllum wallissii Regel, Plant Cell Rep., 2013, vol. 32, no. 3, pp. 369–377.

    Article  CAS  PubMed  Google Scholar 

  34. Grzebelus, E. and Adamus, A., Effect of anti-mitotic agents on development and genome doubling of gynogenic onion (Allium cepa L.) embryos, Plant Sci., 2004, vol. 167, no. 3, pp. 569–574.

    Article  CAS  Google Scholar 

  35. Pintos, B., Manzanera, J.A., and Bueno, M.A., Antimitotic agents increase the production of doubled-haploid embryos from cork oak anther culture, J. Plant Physiol., 2007, vol. 164, no. 12, pp. 1595–1604.

    Article  CAS  PubMed  Google Scholar 

  36. Kong, W.D., Zhu, Y.G., Liang, Y.C., et al., Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.), Envrion. Pollut, 2007, vol. 147, no. 1, pp. 187–193.

    Article  CAS  Google Scholar 

  37. Yumurtaci, A., Vardar, F., and Unal, M., Inhibition of barley root growth by actinomycin D: effects on mitotic activity, protein content and peroxidase activity, Fresen. Environ. Bull., 2007, vol. 16, no. 8, pp. 917–921.

    CAS  Google Scholar 

  38. Jin, C., Chen, Q., Sun, R., et al., Eco-toxic effects of sulfadiazine sodium, sulfamonomethoxine sodium and enrofloxacin on wheat, Chinese cabbage and tomato, Ecotoxicology, 2009, vol. 18, no. 7, pp. 878–885.

    Article  CAS  PubMed  Google Scholar 

  39. Hamal-Mecbur, H., Yilmaz, S., Temel, A., et al., Effects of epirubicin on barley seedligs, Toxicol. Ind. Health, 2014, vol. 30, no. 1, pp. 52–59.

    Article  Google Scholar 

  40. Liu, W., Li, P.J., Qi, X.M., et al., DNA changes in barley (Hordeum vulgare) seedlings induced by cadmium pollution using RAPD analysis, Chemosphere, 2005, vol. 61, no. 2, pp. 158–167.

    Article  CAS  PubMed  Google Scholar 

  41. Anuradha, S. and Rao, S.S.R., Effect of brassinosteroids on salinity stress induced inhibition of seed germination and seedling growth of rice (Oryza sativa L.), Plant Growth Regul., 2001, vol. 33, no. 2, pp. 151–153.

    Article  CAS  Google Scholar 

  42. Vakili, N.G., The experimental formation of polyploidy and its effect in the genus Musa, Am. J. Bot., 1967, vol. 54, no. 1, pp. 24–36.

    Article  Google Scholar 

  43. Luckett, D., Colchicine mutagenesis is associated with substantial heritable variation in cotton, Euphytica, 1989. vol. 42, nos. 1/2, pp. 177–182.

    Article  CAS  Google Scholar 

  44. Hamill, S.D., Smith, M.K., and Dodd, W.A., In vitro induction of banana autotetraploid by colchicines treatment of micropropagated diploids, Aust. J. Bot., 1992, vol. 40, no. 6, pp. 887–896.

    Article  CAS  Google Scholar 

  45. Thao, N.T.P., Ireshino, K., Miyajima, I., et al., Induction of tetraploids in ornamental alocasia through colchicine and oryzalin treatments, Plant Cell Tiss. Org., 2003, vol. 72, no. 1, pp. 19–25.

    Article  CAS  Google Scholar 

  46. Wan, Y., Petolino, J.F., and Widholm, J.M., Efficient production of doubled haploid plants through colchicines treatment of anther-derived maize callus, Theor. Appl. Genet., 1989, vol. 77, no. 6, pp. 889–892.

    Article  CAS  PubMed  Google Scholar 

  47. Ranney, T.G., Polyploidy: from evolution to new plant development, Proc. Intl. Plant. Prop. Soc., 2006, vol. 56, pp. 137–142.

    Google Scholar 

  48. Soroka, A.I., Differentiation of haploid and dihaploid rape plants at the cytological and morphological levels, Cytol. Genet., 2013, vol. 47, no. 2, pp. 88–92.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Temel.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temel, A., Gozukirmizi, N. Cytotoxic effects of metaphase-arresting methods in barley. Cytol. Genet. 49, 382–387 (2015). https://doi.org/10.3103/S0095452715060109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452715060109

Keywords

Navigation