Skip to main content
Log in

Stages of Defect Formation in a Graphene Coating on a Copper Substrate under Irradiation with Helium and Argon Ions

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

A graphene coating deposited onto a copper substrate was irradiated with helium and argon ions with an energy of 100 keV. The effect produced by the radiation fluence on the structure of a graphene coating was studied by Raman light scattering. The processes of defect formation in a graphene coating was modeled at different ion irradiation parameters by the Monte Carlo method in the approximation of binary collisions. It has been shown that the transition to the displacement per atom parameter provides the possibility to compare defect formation processes in a two-dimensional target at different irradiation parameters. It is demonstrated in this study that the accumulation of point defects occurs in a graphene coating under irradiation until the displacement per atom parameter becomes close to \(5\times 10^{-4}\), after which the defect domains are joined with further coating structure destruction at a displacement per atom parameter ranged within \(5\times 10^{-3}{-}10^{-2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, ACS Nano 5, 26 (2011).

    Article  Google Scholar 

  2. M. Garcia-Hernandez and J. Coleman, 2D Mater. 3 (2016).

  3. Y. Du, D. Li, L. Liu, and G. Gai, Polymers 10, 114 (2018).

    Article  Google Scholar 

  4. L. Liu, M. Qing, Y. Wang, and S. Chen, J. Mater. Sci. Technol. 31, 599 (2015).

    Article  ADS  Google Scholar 

  5. D. K. Minnebaev, Yu. V. Balakshin, A. V. Nazarov, I. D. Kharitonov, E. V. Zaitsev, A. D. Zabolotskiy, V. S. Chernysh, and A. A. Shemukhin, Nucl. Instrum. Methods Phys. Res., Sect. B 460, 189 (2019).

    Google Scholar 

  6. M. X. Navarro, R. R. Delgado, M. G. Lagally, G. L. Kulcinski, and J. F. Santarius, Fusion Sci. Technol. 72, 713 (2017).

    Article  Google Scholar 

  7. L. Tapasztu, G. Dobrik, P. Nemes-Incze, G. Vertesy, P. Lambin, and L. P. Biru, Phys. Rev. B 78, 233407 (2008).

    Article  ADS  Google Scholar 

  8. J. C. Meyer, C. Kisielowski, R. Erni, M. D. Rossell, M. F. Crommie, and A. Zettl, Nano Lett. 8, 3582 (2008).

    Article  ADS  Google Scholar 

  9. M. H. Gass, U. Bangert, A. L. Bleloch, P. Wang, R. R. Nair, and A. K. Geim, Nat. Nanotechnol. 3, 676 (2008).

    Article  ADS  Google Scholar 

  10. J.-H. Chen, W. G. Cullen, C. Jang, M. S. Fuhrer, and E. D. Williams, Phys. Rev. Lett. 102, 236805 (2009).

    Article  ADS  Google Scholar 

  11. A. V. Krasheninnikov and K. Nordlund, J. Appl. Phys. 107, 071301 (2010).

    Article  ADS  Google Scholar 

  12. O. Lehtinen, J. Kotakoski, et al., Phys. Rev. B 81, 153401 (2010).

    Article  ADS  Google Scholar 

  13. Yu. V. Balakshin, A. A. Shemukhin, A. V. Nazarov, A. V. Kozhemiako, and V. S. Chernysh, Tech. Phys. 63, 1861 (2018).

    Article  Google Scholar 

  14. J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818 (2010).

    Google Scholar 

  15. K. V. Karabeshkin, P. A. Karaseov, and A. I. Titov, Semiconductors 47, 242 (2013).

    Article  ADS  Google Scholar 

  16. I. Calizo, I. Bejenari, M. Rahman, G. Liu, and A. A. Balandin, J. Appl. Phys. 106, 043509 (2009).

    Article  ADS  Google Scholar 

  17. I. I. Kondrashov, M. G. Rybin, E. A. Obraztsova, and E. D. Obraztsova, Phys. Status Solidi B 256, 1800688 (2019).

    Article  ADS  Google Scholar 

  18. M. Pawlyta, J. N. Rouzaud, and S. Duber, Carbon 84, 479 (2015).

    Article  Google Scholar 

  19. G. Gawlik, P. Ciepielewski, and J. Baranowski, Nucl. Instrum. Methods Phys. Res., Sect. B 406, 683 (2017).

    Google Scholar 

  20. A. Eckmann et al., Nano Lett. 12, 3925 (2012).

    Article  ADS  Google Scholar 

  21. A. Jorio et al., Phys. Status Solidi B 247, 2980 (2010).

    Article  ADS  Google Scholar 

  22. G. Gawlik, P. Ciepielewski, J. Baranowski, and J. Jagielski, Surf. Coat. Tech. 306A, 119 (2016).

    Article  Google Scholar 

  23. G. Gawlik, P. Ciepielewski, J. Baranowski, and J. Jagielski, Nucl. Instrum. Methods Phys. Res., Sect. B 408, 228 (2017).

    Google Scholar 

  24. G. Compagnini, F. Giannazzo, S. Sonde, V. Raineri, and E. Rimini, Carbon 47, 3201 (2009).

    Article  Google Scholar 

  25. M. Tripathi, A. V. Markevich, R. Boettger, S. Facsko, E. Besley, J. Kotakoski, and T. Susi, ACS Nano 12, 4641 (2018).

    Article  Google Scholar 

  26. M. Nastasi, J. W. Mayer, and Y. Wang, Ion Beam Analysis: Fundamentals and Applications (CRC, London, 2015).

    Google Scholar 

  27. Y. Yamamura and H. Tawara, NIFS–DATA 23 (1995).

  28. Sputtering by Particle Bombardment, Ed. by R. Behrisch and K. Wittmaack (Springer, Berlin, 1981).

    Google Scholar 

  29. http://www.knowledgedoor.com/2/elements_ handbook/.

  30. Yu. V. Balakshin, A. V. Kozhemiako, A. P. Evseev, D. K. Minnebaev, and E. M. Elsehly, Moscow Univ. Phys. Bull. 75, 218 (2020).

    Article  ADS  Google Scholar 

  31. M. Lucchese et al., Carbon 48, 1592 (2010).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed on the equipment of the Accelerating Complex of the Lomonosov Moscow State University.

Funding

This study was financially supported by the Russian Scientific Foundation (grant no. 20-72-10118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Balakshin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Glushachenkova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balakshin, Y.V., Minnebaev, D.K., Vorobyeva, E.A. et al. Stages of Defect Formation in a Graphene Coating on a Copper Substrate under Irradiation with Helium and Argon Ions. Moscow Univ. Phys. 77, 498–503 (2022). https://doi.org/10.3103/S0027134922030067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134922030067

Keywords:

Navigation