Skip to main content
Log in

Exploring the effect of varying regimes of ion fluence on the optical and surface electronic properties of graphene

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, the effect of the ion fluence-dependent defect formation on the modification of surface electronic and optical properties of graphene has been investigated. The chemical vapor deposited (CVD) graphene samples were irradiated with 70 MeV Si+5 swift heavy ions (SHI) with varying fluence to study the defect formation mechanism and the role of ion beam fluence in modulating its surface electronic property such as work function. At a low ion dose, acceptor doping via vacancy creation was observed. The redshift in absorption peak position, the blueshift in Raman peak position, and the enhancement in work function values are indicators of such doping effect at low fluence. In contrast, the dense electronic excitation-dominated extended defects were realized at a higher ion dose showing strain-induced modifications in the optoelectronic properties of graphene. This work offers an effective strategy to control defect formation and systematically alter graphene's optical and electronic properties. The experimental findings will be useful for the applicability of graphene under extreme radiation conditions and space research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  ADS  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nat. Lett. 438, 197–200 (2005)

    Article  ADS  Google Scholar 

  3. Z. Jiang, Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Quantum Hall effect in graphene. Solid State Comm. 143, 14–19 (2007)

    Article  ADS  Google Scholar 

  4. S. Pisana, M. Lazzeri, C. Casiraghi, K.S. Novoselov, A.K. Geim, A.C. Ferrari, F. Mauri, Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat. Mater. 6, 198–201 (2007)

    Article  ADS  Google Scholar 

  5. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009)

    Article  ADS  Google Scholar 

  6. T.B. Tang, C.S. Lee, Z.H. Chen, G.D. Yuan, Z.H. Kang, L.B. Luo, H.S. Song, Y. Liu, Z.B. He, W.B. Zhang, I. Bello, S.T. Lee, High-Quality Graphenes via a facile quenching method for field-effect transistors. Nano Lett. 9, 1374–1377 (2009)

    Article  ADS  Google Scholar 

  7. B. Partoens, F.M. Peeters, From graphene to graphite: Electronic structure around the K point. Phys. Rev. B Condens. Matter Mater. Phys. 74, 07540401–07540411 (2006)

    Article  Google Scholar 

  8. G. Yang, L. Li, L. Wing Bun, Ng. Man Cheung, Structure of graphene and its disorders: a review. Sci. Tech. Adv. Mater. 19(1), 613–648 (2018)

    Article  Google Scholar 

  9. J.H. Chen, W.G. Cullen, C. Jang, M.S. Fuhrer, E.D. Williams, Defect scattering in graphene. Phy. Rev. Lett. 102, 236805 (2009)

    Article  ADS  Google Scholar 

  10. J.J. Palacios, J. Fernández-Rossier, L. Brey, Vacancy-induced magnetism in graphene and graphene ribbons. Phys. Rev. B. 77, 195428 (2008)

    Article  ADS  Google Scholar 

  11. Z. Li, F. Chen, Ion beam modification of two-dimensional materials: Characterization, properties, and applications. Appl. Phys. Rev. 4, 011103 (2017). https://doi.org/10.1063/1.4977087

    Article  ADS  Google Scholar 

  12. Z. Bai, L. Zhang, H. Li, L. Liu, Nanopore creation in graphene by ion beam irradiation: geometry, quality, and efficiency. ACS Appl. Mater. Interfaces. 8(37), 24803 (2016)

    Article  Google Scholar 

  13. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, R.S. Ruoff, Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9(12), 4359–4363 (2009)

    Article  ADS  Google Scholar 

  14. Z.Q. Li, C.J. Lu, J.P. Xia, Y. Zhou, Z. Lou, X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 45, 1686–1695 (2007)

    Article  Google Scholar 

  15. C.N.R. Rao, K. Biswas, K.S. Subrahmanyam, K. Govndara, Graphene, the new nanocarbon. J. Mater. Chem 19, 2457–2469 (2009)

    Article  Google Scholar 

  16. M.S. Seehra, V. Narang, U.K. Geddam, A.B. Stefaniak, Correlation between X-ray diffraction and Raman spectra of 16 commercial graphene-based materials and their resulting classification. Carbon 111, 380–385 (2017)

    Article  Google Scholar 

  17. A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013)

    Article  ADS  Google Scholar 

  18. C. Casiraghi, S. Pisana, K.S. Novoselov, A.K. Geim, A.C. Ferrari, Raman fingerprint of charged impurities in graphene. Appl. Phys. Lett. 91(23), 233108 (2007)

    Article  ADS  Google Scholar 

  19. M. Bruna, A.K. Ott, M. Ijäs, D. Yoon, U. Sassi, A.C. Ferrari, Doping dependence of the Raman spectrum of defected graphene. ACS Nano 8(7), 7432–7441 (2014)

    Article  Google Scholar 

  20. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha, U.V. Waghmare, K.S. Novoselov, H.R. Krishnamurthy, A.K. Geim, A.C. Ferrari, A.K. Sood, Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3(4), 210–215 (2008)

    Article  Google Scholar 

  21. J.H. Kim, J.H. Hwang, J. Suh, S. Tongay, S. Kwan, C.C. Hwang, J. Wu, J.Y. Park, Work function engineering of single layer graphene by irradiation-induced defects. Appl. Phys. Lett. 103, 171604 (2013)

    Article  ADS  Google Scholar 

  22. J. Yan, Y. Zhang, P. Kim, A. Pinczuk, Electric field effect tuning of electron-phonon coupling in graphene. Phys. Rev. Lett. 98, 166802 (2007)

    Article  ADS  Google Scholar 

  23. J.E. Lee, G. Ahn, J. Shim, Y.K. lee, S. Ryu, Optical separation of mechanical strain from charge doping in grapheme. Nat. Commun. 3, 1024 (2012)

    Article  ADS  Google Scholar 

  24. E.D. Corro, L. Kavan, M. Kalbac, O. Frank, Strain assessment in graphene through the Raman 2D’ mode. J. Phys. Chem. C 119, 25651 (2015)

    Article  Google Scholar 

  25. N. Ferralis, R. Maboudian, C. Carraro, Evidence of structural strain in epitaxial graphene layers on 6H-SiC (0001). Phys. Rev. Lett. 101, 156801 (2008)

    Article  ADS  Google Scholar 

  26. T. Lee, F.A. Masud, M.J. Kim, H. Rho, Spatially resolved Raman spectroscopy of defects, strains, strain fluctuations in domain structure of monolayer graphene. Sci. Rep. 7, 16681 (2017)

    Article  ADS  Google Scholar 

  27. A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B. 61, 14095–14107 (2000)

    Article  ADS  Google Scholar 

  28. C.H.A. Wong, A. Ambrosi, M. Pumera, Thermally reduced graphenes exhibiting a close relationship to amorphous carbon. Nanoscale 4, 4972 (2012)

    Article  ADS  Google Scholar 

  29. J. Li, C.Y. Liu, Ag/Graphene heterostructures: synthesis, characterization and optical properties. Eur. J. Inorg. Chem. 8, 1244–1248 (2010)

    Article  ADS  Google Scholar 

  30. G. Buchowicz, P.R. Stone, J.T. Robinson, C.D. Cress, J.W. Beeman, O.D. Dubon, Correlation between structure and electrical transport in ion-irradiated graphene grown on Cu foils. Appl. Phys. Lett. 98(3), 032102 (2011)

    Article  ADS  Google Scholar 

  31. C. Zhu, S. Guo, Y. Fang, S. Dong, Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4, 2429–2437 (2010)

    Article  Google Scholar 

  32. L. Yang, Excitonic effects on optical absorption spectra of doped graphene. Nano Lett. 11, 3844–3847 (2011)

    Article  ADS  Google Scholar 

  33. K.F. Mak, L. Ju, F. Wang, T.F. Heinz, Optical spectroscopy of graphene: from the far infrared to the ultraviolet. Solid State Commun. 152, 1341–1349 (2012)

    Article  ADS  Google Scholar 

  34. T. Mohanty, N.C. Mishra, A. Pradhan, D. Kanjilal, Luminescence from Si nanocrystal grown in fused silica using keV and MeV beam. Surf. Coat. Technol. 196, 34–38 (2005)

    Article  Google Scholar 

  35. J. Shakya, A.S. Patel, F. Singh, T. Mohanty, Composition dependent Fermi level shifting of Au decorated MoS2 nanosheets. Appl. Phys. Lett. 108, 013103 (2016)

    Article  ADS  Google Scholar 

  36. T. Takahashi, H. Tokailin, T. Sagawa, Angle resolved ultraviolet photoelectron spectroscopy of the unoccupied band structure of graphite. Phys. Rev. B 32(12), 8317–8324 (1985)

    Article  ADS  Google Scholar 

  37. D. Grassano, M. DAlessandro, O. Pulci, S.G. Sharapov, V.P. Gusynin, A.A. Varlamov, Work function, deformation potential, and collapse of Landau levels in strained graphene and silicene. Phys. Rev. B. 101, 245115 (2020)

    Article  ADS  Google Scholar 

  38. Y.J. Yu, Y. Zhao, S. Ryu, L.E. Brus, K.S. Kim, P. Kim, Tuning the graphene work function by electric field effect. Nano Lett. 9, 3430 (2009)

    Article  ADS  Google Scholar 

  39. X. Peng, F. Tang, A. Copple, Engineering the work function of armchair graphene nanoribbons using strain and functional species: a first principles study. J. Phys. Condens. Matter. 24(075501), 1–10 (2012)

    Google Scholar 

  40. O. Ochedowski, B.K. Bussmann, B. BandEtat, H. Lebius, M. Schleberger, Manipulation of graphene surface by ion irradiation. Appl. Phys. Lett. 102, 153103 (2013)

    Article  ADS  Google Scholar 

  41. J.J. Palacios, F. Yndurain, Critical analysis of vacancy induced magnetism in monolayer and bilayer graphene. Phys. Rev. B 85, 245443 (2012)

    Article  ADS  Google Scholar 

  42. T. Mahanta, T. Mohanty, Fermi level modulation in boron nitride nanosheets by vacancy driven compressive strain. Appl. Phys. Lett. 119, 091902 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to AIRF, JNU for Raman, XRD measurements; Dr. Supriya Sabbani, SPS, JNU for UV-Vis spectroscopic measurement; IUAC, New Delhi for beam time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanuja Mohanty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahanta, T., Kumar, S., Kanjilal, D. et al. Exploring the effect of varying regimes of ion fluence on the optical and surface electronic properties of graphene. Appl. Phys. A 128, 915 (2022). https://doi.org/10.1007/s00339-022-06051-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06051-5

Keywords

Navigation