Skip to main content
Log in

Interactions of helical structures as a molecular basis of intra- and intercellular interactions

  • Biophysics and Medical Physics
  • Published:
Moscow University Physics Bulletin Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Two types of formation of super spirals by spiral counter- and co-intertwining of spiral molecular strings were identified using chiral biomimetics. An earlier statement on the formation of hierarchies of super-spiral structures with an alternating chirality sign in molecular homochiral systems was experimentally proven. By developing the Euler model, estimates of forces and velocities in systems of interacting spiral structures that quantitatively correspond to the characteristic times and dimensions of intracellular and inter-cellular interactions were theoretically obtained. It was shown that the phase of structure formation in the cell is not limiting and the time of formation of intracellular structures is determined by the time that is necessary for the cell to choose a functional program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Alberts, A. Johnson, J. M. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell (Oxfam Books, Shrewsbury, United Kingdom, 2002).

    Google Scholar 

  2. R. B. Dickinson and D. L. Purich, “Nematode sperm motility: Nonpolar filament polymerization mediated by end-tracking motors,” Biophys. J. 92(2), 622–631 (2007).

    Article  Google Scholar 

  3. I. Connell, W. Agace, P. Klemm,M. Schembri, S. Marild, and C. Svanborg, “Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. II,” Proc. Nat. Acad. Sci. USA 93(18), 9827–9832 (1996).

    Article  ADS  Google Scholar 

  4. J. S. Mattick, “Type IV pili and twitching motility,” Ann. Rev. Microbiol. 56(1), 289–314 (2002).

    Article  Google Scholar 

  5. J. Izraelashvili, Intermolecular and Surface Forces (Moscow, 2011) [in Russian].

    Google Scholar 

  6. A. R. Borges, M. Hyacinth, M. Lum, C. M. Dingle, P. L. Hamilton, M. Chruszcz, L. Pu, M. Sabat and K. L. Caran, “Self-assembled thermoreversible gels of nonpolar liquids by racemic propargylic alcohols with fluorinated and nonfluorinated aromatic rings,” Langmuir 24, 7421–7431 (2008).

    Article  Google Scholar 

  7. X. Qiu, W. Meng, and F. Qing, “Synthesis of fluorinated amino acids,” Tetrahedron 60(32), 6711–6745 (2004).

    Article  Google Scholar 

  8. G. K. S. Prakash, M. Mandal, S. Schweizer, N. A. Petasis, and G. A. Olah, “A facile stereocontrolled synthesis of anti-alpha-(trifluoromethyl)-beta-amino alcohols,” Organic Lett. 2(20), 3173–3176 (2000).

    Article  Google Scholar 

  9. Y. Xu, C. Kang, Y. Chen, Yang Xu, Chuanqing Kang, Yu Chen, Zheng Bian, Xuepeng Qiu, Lianxun Gao and Qingxin Meng, “In situ gel-to-crystal transition and synthesis of metal nanoparticles obtained by fluorination of a cyclic β-aminoalcohol gelator,” Chem.-Eur. J. 18(52), 16955–16961 (2012).

    Article  Google Scholar 

  10. S. V. Stovbun, “Formation of wirelike structures in dilute solution of chiral compounds,” Russ. J. Phys. Chem. B 5, 546–553 (2011).

    Article  Google Scholar 

  11. S. V. Stovbun and A. A. Skoblin, “Molecular and supramolecular structures in biological fluids and their homochiral models,” Mos. Univ. Phys. Bull. 67(3), 274–277 (2012), DOI:10.3103/S0027134912030150). http://vmu.phys.msu.ru/abstract/2012/3/12-3-35

    Article  ADS  Google Scholar 

  12. S. V. Stovbun, A. M. Zanin, A. A. Skoblin, A. I. Mikhailov, and A. A. Berlin, “Phenomenological description of the spontaneous formation of macroscopic strings in low-concentration chiral solutions and the formation of anisometric gels,” Dokl. Phys. Chem. 442, 36–39 (2012).

    Article  Google Scholar 

  13. S. V. Stovbun, A. M. Zanin, A. A. Skoblin, A. I. Mikhailov, R. G. Kostyanovskii, M. V. Grishin, and B. R. Shub, “Macroscopic chirality of strings,” Russ. J. Phys. Chem. B 5, 1019–1022 (2011).

    Article  Google Scholar 

  14. S. V. Stovbun, A. A. Skoblin, A. M. Zanin, M. V. Grishin, B. R. Shub, Yu. M. Ageev, G. G. Shishkin, and V. A. Tverdislov, “Superspiralization of Chiral Strings,” Bull. Exper. Biol. Med. 154, 34–36 (2012).

    Article  Google Scholar 

  15. S. V. Stovbun and A. A. Skoblin, “Physicochemical simulation of cell-cell commutation,” Bull. Exper. Biol. Med. 152, 571–574 (2012).

    Article  Google Scholar 

  16. S. V. Stovbun, A. I. Mikhailov, A. A. Skoblin, E. E. Bragina, and M. A. Gomberg, “On the supramolecular mechanism of cell-cell commutation,” Russ. J. Phys. Chem. B 6, 60–64 (2012).

    Article  Google Scholar 

  17. V. A. Tverdislov, “Chirality as a primary switch of hierarchical levels in molecular biological systems,” Biophysics 58, 128–132 (2013).

    Article  Google Scholar 

  18. V. A. Tverdislov, http://arxiv.org/abs/1212.1677

  19. J. R. McIntosh, V. Volkov, F. I. Ataullakhanov, and E. L. Grishchuk, “Tubulin depolymerization may be an ancient biological motor,” J. Cell Sci. 15(123), 3425–3434 (2010).

    Article  Google Scholar 

  20. S. V. Stovbun, Doctoral Dissertation in Mathematics and Physics, (Inst. Khim. Fiz. Ross. Akad. Nauk, Moscow, 2013).

  21. D. M. Zlenko and S. V. Stovbun, “Model of a homochiral supramolecular string,” Russ. J. Phys. Chem. B 8, 613–619 (2014). http://link.springer.com/journal/volumesAndIssues/11826

    Article  Google Scholar 

  22. S. V. Stovbun and A. A. Skoblin, “Optical effect estimation in chiral solutions,” Khim. Fiz. 31(7), 7–11 (2012).

    Google Scholar 

  23. S. V. Stovbun and A. A. Skoblin, “Chirotropical phenomena in biological fluids and their homochiral models,” Mos. Univ. Phys. Bull. 67(3), 278–281 (2012). DOI:10.3103/S0027134912030162). http://vmu.phys.msu.ru/abstract/2012/3/12-3-39

    Article  ADS  Google Scholar 

  24. I. I. Artobolevskii, Theory of Mechanisms and Machines. A Tutorial for Higher Techn. Educat. Inst. (Moscow, 1988) [in Russian], 4th ed.

    Google Scholar 

  25. S. V. Stovbun, A. A. Skoblin, and A. M. Zanin, “Structural dynamics of chiral strings,” Russ. J. Phys. Chem. B 8, 293–301 (2014). http://link.springer.com/journal/volumesAndIssues/11826

    Article  Google Scholar 

  26. L. D. Landau and E. M. Lifshits, Course of Theoretical Physics. Vol. 6: Fluid Mechanics (London: Pergamon, 1959; Moscow, 1988).

    Google Scholar 

  27. S. V. Stovbun, A. A. Skoblin, A. M. Zanin, D. P. Shashkin, A. A. Berlin, and V. A. Tverdislov, “Commensurability effects in chiral strings,” Dokl. Phys. Chem. 450, 138–141 (2013).

    Article  Google Scholar 

  28. Physical Values, Ed. by I. S. Grigor’ev and E. Z. Meilikhov, (Moscow, 1991) [in Russian].

    Google Scholar 

  29. L. A. Blumenfeld and A. N. Tikhonov, Biophysical Thermodynamics of Intracellular Processes. Molecular Machines of the Living Cell (Springer-Verlag, New York, 1994).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Stovbun.

Additional information

Original Russian Text © S.V. Stovbun, A.A. Skoblin, J.A. Litvin, M.G. Mikhaleva, V.A. Tverdislov, 2015, published in Vestnik Moskovskogo Universiteta. Fizika, 2015, No. 1, pp. 45–50.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stovbun, S.V., Skoblin, A.A., Litvin, J.A. et al. Interactions of helical structures as a molecular basis of intra- and intercellular interactions. Moscow Univ. Phys. 70, 45–50 (2015). https://doi.org/10.3103/S0027134915010105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134915010105

Keywords

Navigation