Skip to main content
Log in

Calculation and Properties of the Correlation Dimension of Alkanes Based on Molecular Scattering Curves

  • Published:
Moscow University Chemistry Bulletin Aims and scope

Abstract

For a series of n-alkanes C2H6 … C40H82, the correlation dimension (D2) is calculated based on the molecular scattering curves. It is found that D2 varies in the range 1.10–1.22. By increasing the total number of atoms the correlation dimension increases and then stabilizes. The effect of the replacement of hydrogen atoms by halogen atoms and the change in the degree of hybridization of carbon atoms by D2 are studied. The correlation dimension is identified with the other fractal characteristics of the molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Li, N., Susanto, H., Cemlyn, B.R., Henning, I.D., and Adams, M.J., Opt. Express, 2018, vol. 26, p. 4751. https://doi.org/10.1364/OE.26.004751

    Article  CAS  PubMed  Google Scholar 

  2. Mahmoud, E.E., Higazy, M., and Al-Harthi, T.M., Mathematics, 2019, vol. 7, p. 877. https://doi.org/10.3390/math7100877

    Article  Google Scholar 

  3. Pillai, N., Schwartz, S.L., Ho, T., Dokoumetzidis, A., Bies, R., and Freedman, I., J. Pharmacokinet. Pharmacodyn., 2019, vol. 46, p. 193. https://doi.org/10.1007/s10928-019-09629-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Toker, D., Sommer, F.T., and d’Esposito, M., Commun. Biol., 2020, vol. 3, p. 11. https://doi.org/10.1038/s42003-019-0715-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang, X. and Zhu, H., Complexity, 2019, vol. 2019, 6715036. https://doi.org/10.1155/2019/6715036

    Article  Google Scholar 

  6. Tanasie, A., Dracea, R., and Ladaru, G.R., Sustainability, 2017, vol. 9, p. 2355. https://doi.org/10.3390/su912235

    Article  Google Scholar 

  7. McMahon, C.J., Toomey, J.P., and Kane, D.M., PLoS One, 2017, vol. 12, e0181559. https://doi.org/10.1371/journal.pone.018155

    Article  PubMed  PubMed Central  Google Scholar 

  8. Navarro-Urrios, D., Capuj, N.E., Colombano, M.F., García, P.D., Sledzinska, M., Alzina, F., Griol, A., Martínez, A., and Sotomayor-Torres, C.M., Nat. Commun., 2017, vol. 8, p. 14965. https://doi.org/10.1038/ncomms14965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kia, B., Lindner, J.F., and Ditto, W.L., Philos. Trans. R. Soc., A, 2017, vol. 375, 20160222. https://doi.org/10.1098/rsta.2016.0222

  10. Boeing, G., Systems, 2016, vol. 4, p. 37.

    Article  Google Scholar 

  11. Binous, H. and Ahmed Bellagi, A., Comput. Appl. Eng. Educ., 2019, vol. 27, p. 217. https://doi.org/10.1002/cae.22070

    Article  Google Scholar 

  12. Chen, Y., Wang, Y., and Li, X., Chaos Solitons Fractals, 2019, vol. 126, p. 122. https://doi.org/10.1016/j.chaos.2019.05.029

    Article  Google Scholar 

  13. Showalter, K. and Epstein, I.R., Chaos, 2015, vol. 25, 097613. https://doi.org/10.1063/1.4918601

    Article  CAS  PubMed  Google Scholar 

  14. Cramer, J.A. and Booksh, K.S., J. Chemom., 2006, vol. 20, p. 447. https://doi.org/10.1002/cem.1003

    Article  CAS  Google Scholar 

  15. Hudson, J.L. and Mankin, J.C., J. Chem. Phys., 1981, vol. 74, p. 6171. https://doi.org/10.1063/1.441007

    Article  CAS  Google Scholar 

  16. Pfeifer, P. and Anvir, D., J. Chem. Phys., 1983, vol. 79, p. 3558. https://doi.org/10.1063/1.446210

    Article  CAS  Google Scholar 

  17. Konow, C., Somberg, N.H., Chavez, J., Epstein, I.R., and Dolnik, M., Phys. Chem. Chem. Phys., 2019, vol. 21, p. 6718. https://doi.org/10.1039/C8CP07797E

    Article  CAS  PubMed  Google Scholar 

  18. Takens, F., Dynamical Systems and Turbulence, Rand, D. and Young, L.S., Eds., Warwick 1980, Lect. Notes Math., 1981, vol. 898, p. 366. https://doi.org/10.1007/BFb0091924

  19. Grassberger, P. and Procaccia, I., Phys. Rev. Lett., 1983, vol. 50, no. 5, p. 346. https://doi.org/10.1103/PhysRevLett.50.346

    Article  Google Scholar 

  20. Krakovska, A., Entropy, 2019, vol. 21, p. 818. https://doi.org/10.3390/e21090818

    Article  PubMed Central  Google Scholar 

  21. Nayak, S.K., Bit, A., Dey, A., Mohapatra, B., and Pal, K., J. Healthcare Eng., 2018, vol. 2018, 6920420. https://doi.org/10.1155/2018/6920420

    Article  Google Scholar 

  22. Bolea, J., Laguna, P., Remartínez, J.M., Rovira, E., Navarro, A., and Bailón, R., Comput. Math. Methods Med., 2014, vol. 2014, 129248. https://doi.org/10.1155/2014/129248

    Article  PubMed  PubMed Central  Google Scholar 

  23. McMahon, C.J., Toomey, J.P., and Kane, D.M., PLoS One, 2017, vol. 12, e0181559 https://doi.org/10.1371/journal.pone.0181559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Prostredny, M., Fletcher, A., and Mulheran, P., RSC Adv., 2019, vol. 9, p. 20065. https://doi.org/10.1039/C9RA01979K

    Article  CAS  Google Scholar 

  25. Anitas, E.M., Nanomaterials, 2019, vol. 9, p. 648. https://doi.org/10.3390/nano9040648

    Article  CAS  Google Scholar 

  26. Vilkov, L.V., Anashkin, M.G., Zasorin, E.Z., Mastryukov, V.S., Spiridonov, V.P., and Sadova, N.I., Teoreticheskie osnovy gazovoi elektronografii (Theoretical Foundations of Gas Electron Diffraction), Moscow: Mosk. Gos. Univ., 1974.

  27. Soltzberg, L.J. and Wilkins, C.L., J. Am. Chem. Soc., 1977, vol. 99, p. 439. https://doi.org/10.1021/ja00444a021

    Article  CAS  Google Scholar 

  28. Novikov, V.P. and Raevskii, O.A., Pharm. Chem. J., 1982, vol. 16, p. 379. https://doi.org/10.1007/BF00762059

    Article  Google Scholar 

  29. Schuur, J.H., Selzer, P., and Gasteiger, J., J. Chem. Inf. Comput. Sci., 1996, vol. 36, p. 334. https://doi.org/10.1021/ci950164c

    Article  CAS  Google Scholar 

  30. Muratov, E.N., Bajorath, J., Sheridan, R.P., Tetko, I.V., Filimonov, D., Poroikov, V., Oprea, T.I., Baskin, I.I., Varnek, A., Roitberg, A., Isayev, O., Curtalolo, S., Fourches, D., Cohen, Y., Aspuru-Guzik, A., Winkler, D.A., Agrafiotis, D., Cherkasov, A., and Tropsha, A., Chem. Soc. Rev., 2020, vol. 49, p. 3525. https://doi.org/10.1039/d0cs00098a

    Article  CAS  PubMed  Google Scholar 

  31. Hypercube. http://www.hyper.com/.

  32. Wierl, K., Ann. Phys. (Leipzig, Ger.), 1931, vol. 8, p. 521.

  33. Cao, L., Phys. D (Amsterdam, Neth.), 1997, vol. 110, p. 43. https://doi.org/10.1016/S0167-2789(97)00118-8

  34. TISEAN 3.0.1. Nonlinear Time Series Analysis. https:// www.pks.mpg.de/~tisean/Tisean_3.0.1/index.htm/.

  35. Hegger, R., Kantz, H., and Schreiber, T., Chaos, 1999, vol. 9, p. 413. https://doi.org/10.1063/1.166424

    Article  PubMed  Google Scholar 

  36. Albano, A.M., Mees, A.I., de Guzman, G.C., and Rapp, P.E., in Chaos in Biological Systems, Degn, H., Holden, A.V., and Olsen, L.F., Eds., New York: Plenum, 1987, p. 207.

    Google Scholar 

  37. Kubinyi, H., Quant. Struct.-Act. Relat., 1994, vol. 13, p. 393. https://doi.org/10.1002/qsar.19940130403

    Article  CAS  Google Scholar 

  38. Forsythe, G.E., Malcolm, M.A., and Moler, C.B., Computer Methods for Mathematical Computations, Englewood Cliffs, NJ: Prentice-Hall, 1977.

    Google Scholar 

  39. Sprott, J.C. and Rowlands, G., Int. J. Bifurcation Chaos, 2011, vol. 11, p. 1865. https://doi.org/10.1142/S021812740100305X

    Article  Google Scholar 

  40. Saha, L.M., Prasad, S., and Mohanty, R.K., Appl. Math. Sci., 2012, vol. 6, p. 4197.

    Google Scholar 

  41. Grigorev, V.Yu. and Grigoreva, L.D., Moscow Univ. Chem. Bull. (Engl. Transl.), 2017, vol. 72, p. 144. https://doi.org/10.3103/S0027131417030026

  42. Geng, S., Zhou, W., Yuan, Q., Cai, D., and Zeng, Y., Neurol. Res., 2011, vol. 33, p. 908. https://doi.org/10.1179/1743132811Y.0000000041

    Article  PubMed  Google Scholar 

  43. Grigorev, V.Yu. and Grigoreva, L.D., Moscow Univ. Chem. Bull. (Engl. Transl.), 2016, vol. 71, p. 199. https://doi.org/10.3103/S0027131416030056

Download references

Funding

This study was performed as part of a state assignment of the Institute of Physiologically Active Substances of the Russian Academy of Sciences in 2020 (topic no. 0090-2020-0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. D. Grigoreva.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

COMPLIANCE WITH ETHICAL STANDARDS

The study was performed without the use of animals or people as subjects.

Additional information

Translated by P. Kuchina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigoreva, L.D., Grigorev, V.Y. Calculation and Properties of the Correlation Dimension of Alkanes Based on Molecular Scattering Curves. Moscow Univ. Chem. Bull. 76, 21–26 (2021). https://doi.org/10.3103/S0027131421010041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027131421010041

Keywords:

Navigation