Skip to main content
Log in

Instability of the Water Phase Diagram under Short Pulse Loading

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The phase transformation of water into ice VI or ice VII under extremely high-pressure rates is studied. The model based on the incubation time approach is developed to predict critical conditions of water crystallization in dynamics and to plot a shifted diagram corresponding to experimental observations. Theoretical prediction appears in a good agreement with the experimental data. It was shown that the incubation time value of the phase transformation significantly depends on not only resulting temperature of dynamically compressed water while crystallization onset but also on the initial one at the unloaded state

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. R. J. Clifton, “High strain rate behavior of metals,” Appl. Mech. Rev. 43 (5), 9–22 (1990).

    Article  ADS  Google Scholar 

  2. R. J. Thomas and A. D. Sorensen, “Review of strain rate effects for UHPC in tension,” Construct. Build Mater. 153, 846–856 (2017). https://doi.org/10.1016/j.conbuildmat.2017.07.168

    Article  Google Scholar 

  3. A. A. Bogach and A.V. Utkin, “Strength of water under pulsed loading,” J. Appl. Mech. Techn. Phys. 41 (4), 752–758 (2000). https://doi.org/10.1007/BF02466877

    Article  ADS  Google Scholar 

  4. A. S. Besov, V.K. Kedrinskii, N.F. Morozov et al., “On the similarity of the initial stage of failure of solids and liquids under impulse loading,” Dokl. Phys. 46, 363–365 (2001). https://doi.org/10.1134/1.1378105

    Article  ADS  Google Scholar 

  5. D. H. Dolan, Y. M. Gupta, and J. N. Johnson, “Nanosecond freezing of water under multiple shock wave compression: Continuum modeling and wave profile measurements,” J. Chem. Phys. 123, 064702 (2005). https://doi.org/10.1063/1.1993556

  6. R. Goldstein and N. Osipenko, “Some aspects of strength in sea ice mechanics,” Phys. Mesomech. 18 (2), 139–148 (2015). https://doi.org/10.1134/S102995991502006X

    Article  Google Scholar 

  7. L. Rozenberg, High-Intensity Ultrasonic Fields (Springer, 1971).

    Book  Google Scholar 

  8. B. J. Mason, “The supercooling and nucleation of water,” Adv. Phys. 7 (26), 221–234 (1958). https://doi.org/10.1080/00018735800101237

    Article  ADS  Google Scholar 

  9. Yu. V. Petrov and A. A. Utkin, “Dependence of the dynamic strength on loading rate,” Sov. Mater. Sci. 25 (2), 153–156. (1989).

    Article  Google Scholar 

  10. Yu. V. Petrov, “Incubation time criterion and the pulsed strength of continua: fracture, cavitation, and electrical breakdown,” Dokl. Phys. 49, 246–249 (2004). https://doi.org/10.1134/1.1753621

    Article  ADS  Google Scholar 

  11. G. A. Volkov, Yu. V. Petrov, and A. A. Gruzdkov, “Liquid-vapor phase equilibrium conditions in an ultrasonic field,” Dokl. Phys. 60, 229–231 (2015). https://doi.org/10.1134/S1028335815050122

    Article  ADS  Google Scholar 

  12. D. H. Dolan and Y. M. Gupta, “Time-dependent freezing of water under dynamic compression,” Chem. Phys. Lett. 374, 608–612 (2003). https://doi.org/10.1016/S0009-2614(03)00777-2

    Article  ADS  Google Scholar 

  13. D. H. Dolan and Y. M. Gupta, “Nanosecond freezing of water under multiple shock wave compression: Optical transmission and imaging measurements,” J. Chem. Phys. 121, 9050–9057 (2004). https://doi.org/10.1063/1.1805499

    Article  ADS  Google Scholar 

  14. A. E. Gleason, E. Galtier, H.J. Leeet al., “Compression freezing kinetics of water to ice VII,” Phys. Rev. Lett. 199, 025701 (2017). https://doi.org/10.1103/PhysRevLett.119.025701

  15. E. J. Nissen and D.H. Dolan, “Temperature and rate effects in ramp-wave compression freezing of liquid water,” J. Appl. Phys. 126, 015903, (2019). https://doi.org/10.1063/1.5099408

  16. N. Golding. D. J. Prior, L. A. Stern, and W. B. Durham, “Plastic faulting in ice,” J. Geophys. Res. Solid Earth 125, e2019JB018749 (2020). https://doi.org/10.1029/2019JB018749

  17. N. A. Gorbushin and Yu. V. Petrov. “Freezing of water under intense short time shock,” Dokl. Phys. 59 (6), 283–285 (2014). https://doi.org/10.1134/S102833581406010X.9

    Article  ADS  Google Scholar 

  18. N. A. Gorbushin, A. N. Logachev, Y. V. Petrov, et al., “Destruction of the adhesion zone by combined pulsed-vibrational impacts,” Mater. Phys. Mech. 36, 114–120 (2018). https://doi.org/10.18720/MPM.3612018

    Article  Google Scholar 

  19. G. Volkov, N. Granichin, Y. P. Zhao, et al., “The influence of background ultrasonic field on the strength of adhesive zones under dynamic impact loads,” Materials 14, 3188 (2021). https://doi.org/10.3390/ma14123188

    Article  ADS  Google Scholar 

  20. N. Granichin, Y. Petrov, and G. Volkov, “Delamination of a plane adhesion zone under combined dynamic influences,” J. Techn. Phys. 90 (1), 74–78 (2020). https://doi.org/10.21883/JTF.2020.01.48664.68-19

    Article  Google Scholar 

  21. F. Simon and G. Glatzen, “Bernerkungen zur Schmelzdruckkurve,” Ztschr. Anorgan. Algem. Chem. 178 (1), 309-316 (1929). https://doi.org/10.1002/zaac.19291780123

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, grant no. 20-79-10078.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. O. Granichin, G. A. Volkov, A. A. Gruzdkov or Y. V. Petrov.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Granichin, N.O., Volkov, G.A., Gruzdkov, A.A. et al. Instability of the Water Phase Diagram under Short Pulse Loading. Mech. Solids 58, 1599–1605 (2023). https://doi.org/10.3103/S0025654423600721

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654423600721

Keywords:

Navigation