Skip to main content

Mechanical Compression

  • Chapter
  • First Online:
The Attribute of Water

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 113))

Abstract

Water and ice respond to mechanical compression unusually with numerous anomalies. Regelation, i.e., ice melts under compression and freezes again when the pressure is relieved, evidences that the O:H–O bond extraordinary recoverability and that quasisolid phase boundary dispersivity. An oxygen atom always finds bonding partners to retain its sp3-orbital hybridization once the O:H breaks, which ensures O:H–O bond recoverability to its original state once the pressure is removed. On the other hand, mechanical compression shortens the O:H nonbond and soften its phonon but the H–O bond responds to compression oppositely, lowering the H–O phonon frequency, which offsets the Debye temperature and the boundaries of the quasisolid phase outwardly, which elevates the freezing point and depresses the melting point, so regelation takes place. Reproduction of the Tm(P) profile clarifies that the H–O bond energy EH determines the Tm with derivative of EH = 3.97 eV for bulk water and ice.

• Compression shortens the O:H nonbond and lengthens the H−O bond towards H + centralization with strong polarization that enlarges the band gap.

• Compression depresses the T m by dispersing the quasisolid-phase boundary through ω x Dx ) relaxation.

• O:H–O bond recovers when the mechanical compression, molecular undercoordination, or thermal excitation is relieved.

• Persistence of sp 3orbital hybridization of O 2 entitles O:H–O extraordinary recoverability from deformation and dissociation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J.D. Forbes, Illustrations of the viscous theory of glacier motion. part ii. an attempt to establish by observation the plasticity of glacier ice. Philos. Trans. R. Soc. London 136, 157–175 (1846)

    Article  Google Scholar 

  2. J.D. Forbes, Illustrations of the viscous theory of glacier motion. part i. containing experiments on the flow of plastic bodies, and observations on the phenomena of lava streams. Philos. Trans. R. Soc. London 136, 143–155 (1846)

    Article  Google Scholar 

  3. J. Thomson, Note on professor Faraday’s recent experiments on regelation. Proc. R. Soc. London 10, 151–160 (1859)

    Article  Google Scholar 

  4. M. Faraday, Note on regelation. Proc. R. Soc. London 10, 440–450 (1859)

    Article  Google Scholar 

  5. J.L. Green, D.J. Durben, G.H. Wolf, C.A. Angell, Water and solutions at negative pressure: raman spectroscopic study to -80 megapascals. Science 249(4969), 649–652 (1990)

    Article  ADS  Google Scholar 

  6. M. Chaplin, Water Structure and Science: http://www.lsbu.ac.uk/water/

  7. YouTube. Does Pressure Melt Ice?, https://www.youtube.com/watch?v=gM3zP72-rJE

  8. Y. Yoshimura, S.T. Stewart, M. Somayazulu, H.K. Mao, R.J. Hemley, Convergent Raman features in high density amorphous ice, ice VII, and ice VIII under pressure. J. Phys. Chem. B 115(14), 3756–3760 (2011)

    Article  Google Scholar 

  9. Y. Huang, X. Zhang, Z. Ma, Y. Zhou, W. Zheng, J. Zhou, C.Q. Sun, Hydrogen-bond relaxation dynamics: resolving mysteries of water ice. Coord. Chem. Rev. 285, 109–165 (2015)

    Article  Google Scholar 

  10. C.Q. Sun, X. Zhang, X. Fu, W. Zheng, J.-L. Kuo, Y. Zhou, Z. Shen, J. Zhou, Density and phonon-stiffness anomalies of water and ice in the full temperature range. J. Phys. Chem. Lett. 4, 3238–3244 (2013)

    Article  Google Scholar 

  11. C.Q. Sun, X. Zhang, W.T. Zheng, Hidden force opposing ice compression. Chem. Sci. 3, 1455–1460 (2012)

    Article  Google Scholar 

  12. C.Q. Sun, Oxidation electronics: bond-band-barrier correlation and its applications. Prog. Mater. Sci. 48(6), 521–685 (2003)

    Article  Google Scholar 

  13. C.Q. Sun, Relaxation of the chemical bond, in Springer Series in Chemical Physics 108. vol. 108 (Springer, Heidelberg, 2014), 807 pp

    Google Scholar 

  14. T.B. James, Melting and regelation of ice. Nature (London) 5, 185 (1872)

    Article  Google Scholar 

  15. J.M. Thomas, Michael Faraday and The Royal Institution: The Genius of Man and Place (1991)

    Google Scholar 

  16. W. Holzapfel, On the symmetry of the hydrogen bonds in ice VII. J. Chem. Phys. 56(2), 712 (1972)

    Article  ADS  Google Scholar 

  17. A.F. Goncharov, V.V. Struzhkin, H.-K. Mao, R.J. Hemley, Raman spectroscopy of dense H2O and the transition to symmetric hydrogen bonds. Phys. Rev. Lett. 83(10), 1998–2001 (1999)

    Article  ADS  Google Scholar 

  18. M. Benoit, D. Marx, M. Parrinello, Tunnelling and zero-point motion in high-pressure ice. Nature 392(6673), 258–261 (1998)

    Article  ADS  Google Scholar 

  19. P. Loubeyre, R. LeToullec, E. Wolanin, M. Hanfland, D. Husermann, Modulated phases and proton centring in ice observed by X-ray diffraction up to 170 GPa. Nature 397(6719), 503–506 (1999)

    Article  ADS  Google Scholar 

  20. A.F. Goncharov, V.V. Struzhkin, M.S. Somayazulu, R.J. Hemley, H.K. Mao, Compression of ice to 210 gigapascals: infrared evidence for a symmetric hydrogen-bonded phase. Science 273(5272), 218–220 (1996)

    Article  ADS  Google Scholar 

  21. J. Teixeira, High-pressure physics - the double identity of ice X. Nature 392(6673), 232–233 (1998)

    Article  ADS  Google Scholar 

  22. I.A. Ryzhkin, “Symmetrical” phase and collective excitations in the proton system of ice. J. Exp. Theor. Phys. 88(6), 1208–1211 (1999)

    Article  ADS  Google Scholar 

  23. F.H. Stillinger, K.S. Schweizer, Ice under compression-transition to symmetrical hydrogen-bonds. J. Phys. Chem. 87(21), 4281–4288 (1983)

    Article  Google Scholar 

  24. L.N. Tian, A.I. Kolesnikov, J.C. Li, Ab initio simulation of hydrogen bonding in ices under ultra-high pressure. J. Chem. Phys. 137(20), 204507 (2012)

    Article  ADS  Google Scholar 

  25. Y. Yoshimura, S.T. Stewart, M. Somayazulu, H. Mao, R.J. Hemley, High-pressure x-ray diffraction and Raman spectroscopy of ice VIII. J. Chem. Phys. 124(2), 024502 (2006)

    Article  ADS  Google Scholar 

  26. K. Liu, J.D. Cruzan, R.J. Saykally, Water clusters. Science 271(5251), 929–933 (1996)

    Article  ADS  Google Scholar 

  27. R. Ludwig, Water: from clusters to the bulk. Angewandte Chemie-International Edition 40(10), 1808–1827 (2001)

    Article  Google Scholar 

  28. D. Kang, J. Dai, Y. Hou, J. Yuan, Structure and vibrational spectra of small water clusters from first principles simulations. J. Chem. Phys. 133(1), 014302 (2010)

    Article  ADS  Google Scholar 

  29. T. Yan, S. Li, K. Wang, X. Tan, Z. Jiang, K. Yang, B. Liu, G. Zou, B. Zou, Pressure-induced phase transition in N-H…O hydrogen-bonded molecular crystal oxamide. J. Phys. Chem. B 116(32), 9796–9802 (2012)

    Article  Google Scholar 

  30. B. Santra, J. Klimeš, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, M. Scheffler, Hydrogen bonds and van der Waals forces in ice at ambient and high pressures. Phys. Rev. Lett. 107(18), 185701 (2011)

    Article  ADS  Google Scholar 

  31. J.E. Bertie, E. Whalley, Infrared spectra of Ices II, III, and V in the Range 4000 to 350 cm—1. J. Chem. Phys. 40(6), 1646–1659 (1964)

    Article  ADS  Google Scholar 

  32. P.T.T. Wong, E. Whalley, Raman spectrum of ice VIII. J. Chem. Phys. 64(6), 2359–2366 (1976)

    Article  ADS  Google Scholar 

  33. J.E. Bertie, F.E. Bates, Mid-infrared spectra of deuterated ices at 10 °K and interpretation of the OD stretching bands of ices II and IX. J. Chem. Phys. 67(4), 1511–1518 (1977)

    Article  ADS  Google Scholar 

  34. W.T. Zheng, C.Q. Sun, Underneath the fascinations of carbon nanotubes and graphene nanoribbons. Energy Environ. Sci. 4(3), 627–655 (2011)

    Article  Google Scholar 

  35. J.W. Li, S.Z. Ma, X.J. Liu, Z.F. Zhou, C.Q. Sun, ZnO meso-mechano-thermo physical chemistry. Chem. Rev. 112(5), 2833–2852 (2012)

    Article  Google Scholar 

  36. M.X. Gu, Y.C. Zhou, L.K. Pan, Z. Sun, S.Z. Wang, C.Q. Sun, Temperature dependence of the elastic and vibronic behavior of Si, Ge, and diamond crystals. J. Appl. Phys. 102(8), 083524 (2007)

    Article  ADS  Google Scholar 

  37. M.X. Gu, L.K. Pan, T.C.A. Yeung, B.K. Tay, C.Q. Sun, Atomistic origin of the thermally driven softening of Raman optical phonons in group III nitrides. J. Phys. Chem. C 111(36), 13606–13610 (2007)

    Article  Google Scholar 

  38. C. Yang, Z.F. Zhou, J.W. Li, X.X. Yang, W. Qin, R. Jiang, N.G. Guo, Y. Wang, C.Q. Sun, Correlation between the band gap, elastic modulus, Raman shift and melting point of CdS, ZnS, and CdSe semiconductors and their size dependency. Nanoscale 4, 1304–1307 (2012)

    Article  ADS  Google Scholar 

  39. M. Song, H. Yamawaki, H. Fujihisa, M. Sakashita, K. Aoki, Infrared absorption study of Fermi resonance and hydrogen-bond symmetrization of ice up to 141 GPa. Phys. Rev. B 60(18), 12644 (1999)

    Article  ADS  Google Scholar 

  40. P. Pruzan, J.C. Chervin, E. Wolanin, B. Canny, M. Gauthier, M. Hanfland, Phase diagram of ice in the VII-VIII-X domain. Vibrational and structural data for strongly compressed ice VIII. J. Raman Spectrosc. 34(7–8), 591–610 (2003)

    Article  ADS  Google Scholar 

  41. T. Okada, K. Komatsu, T. Kawamoto, T. Yamanaka, H. Kagi, Pressure response of Raman spectra of water and its implication to the change in hydrogen bond interaction. Spectrochim. Acta A 61(10), 2423–2427 (2005)

    Article  ADS  Google Scholar 

  42. K. Aoki, H. Yamawaki, M. Sakashita, Observation of Fano interference in high-pressure ice VII. Phys. Rev. Lett. 76(5), 784–786 (1996)

    Article  ADS  Google Scholar 

  43. G. Malenkov, Liquid water and ices: understanding the structure and physical properties. J. Phys.-Condens. Matter 21(28), 283101 (2009)

    Article  Google Scholar 

  44. C.Q. Sun, H.L. Bai, B.K. Tay, S. Li, E.Y. Jiang, Dimension, strength, and chemical and thermal stability of a single C-C bond in carbon nanotubes. J. Phys. Chem. B 107(31), 7544–7546 (2003)

    Article  Google Scholar 

  45. C.Q. Sun, Thermo-mechanical behavior of low-dimensional systems: the local bond average approach. Prog. Mater Sci. 54(2), 179–307 (2009)

    Article  Google Scholar 

  46. X.J. Liu, M.L. Bo, X. Zhang, L.T. Li, Y.G. Nie, H. Tian, Y. Sun, S. Xu, Y. Wang, W. Zheng, C.Q. Sun, Coordination-resolved electron spectrometrics. Chem. Rev. 115(14), 6746–6810 (2015)

    Article  Google Scholar 

  47. M. Zhao, W.T. Zheng, J.C. Li, Z. Wen, M.X. Gu, C.Q. Sun, Atomistic origin, temperature dependence, and responsibilities of surface energetics: An extended broken-bond rule. Phys. Rev. B 75(8), 085427 (2007)

    Article  ADS  Google Scholar 

  48. C.Q. Sun, X. Zhang, J. Zhou, Y. Huang, Y. Zhou, W. Zheng, Density, elasticity, and stability anomalies of water molecules with fewer than four neighbors. J. Phys. Chem. Lett. 4, 2565–2570 (2013)

    Article  Google Scholar 

  49. X. Zhang, Y. Huang, P. Sun, X. Liu, Z. Ma, Y. Zhou, J. Zhou, W. Zheng, C.Q. Sun, Ice regelation: hydrogen-bond extraordinary recoverability and water quasisolid-phase-boundary dispersivity. Sci. Rep. 5, 13655 (2015)

    Article  ADS  Google Scholar 

  50. Air Pressure and Altitude above Sea Level. Engineering toolbox, http://www.engineeringtoolbox.com/air-altitude-pressure-d_462.html

  51. Boiling Points of Water at Various Elevations. Engineering toolbox, http://www.engineeringtoolbox.com/boiling-points-water-altitude-d_1344.html

  52. L.K. Pan, S.Q. Xu, W. Qin, X.J. Liu, Z. Sun, W.T. Zheng, C.Q. Sun, Skin dominance of the dielectric-electronic-phononic-photonic attribute of nanostructured silicon. Surf. Sci. Rep. 68(3–4), 418–455 (2013)

    Article  ADS  Google Scholar 

  53. C.Q. Sun, T.P. Chen, B.K. Tay, S. Li, H. Huang, Y.B. Zhang, L.K. Pan, S.P. Lau, X.W. Sun, An extended ‘quantum confinement’ theory: surface-coordination imperfection modifies the entire band structure of a nanosolid. J. Phys. D-Appl. Phys. 34(24), 3470–3479 (2001)

    Article  ADS  Google Scholar 

  54. C.Q. Sun, Dominance of broken bonds and nonbonding electrons at the nanoscale. Nanoscale 2(10), 1930–1961 (2010)

    Article  ADS  Google Scholar 

  55. A. Hermann, P. Schwerdtfeger, Blueshifting the onset of optical UV absorption for water under pressure. Phys. Rev. Lett. 106(18), 187403 (2011)

    Article  ADS  Google Scholar 

  56. S. Luntz, A. Cornell. This Is What The Underside Of An Iceberg Looks Like. 2015, http://www.iflscience.com/environment/underside-iceberg

  57. J.D. Goddard, The viscous drag on solids moving through solids. AlChE J. 60(4), 1488–1498 (2014)

    Article  MathSciNet  Google Scholar 

  58. D.T. Möhlmann, Are nanometric films of liquid undercooled interfacial water bio-relevant? Cryobiology 58(3), 256–261 (2009)

    Article  Google Scholar 

  59. T. Hynninen, V. Heinonen, C.L. Dias, M. Karttunen, A.S. Foster, T. Ala-Nissila, Cutting ice: nanowire regelation. Phys. Rev. Lett. 105(8), 086102 (2010)

    Article  ADS  Google Scholar 

  60. D. Petely, Our strange desire to find a landslide trigger. http://ihrrblog.org/2013/11/08/our-strange-desire-to-find-a-landslide-trigger/, (2013)

  61. J. Corripio, Spiked Ice (Edinburgh, Scotland, 2001)

    Google Scholar 

  62. V. Bergeron, C. Berger, M. Betterton, Controlled irradiative formation of penitentes. Phys. Rev. Lett. 96(9), 098502 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q. Sun .

Appendix: Featured News

Appendix: Featured News

Unlocking the mysteries of ice

Home/Chemistry World/News/2012/Marc

By Erica Wise, Editor for RSC Press

27 March 2012

The unusual properties of ice under compression are due to Coulomb repulsion between bonding and non-bonding electron pairs, say scientists from Singapore and China.

Frozen water behaves differently from other materials in response to pressure. It has abnormally low compressibility, and applying pressure decreases rather than increases the critical temperature for phase transitions. These anomalies have puzzled scientists for many years and satisfactorily modelling them has proven a great challenge.

Now, Chang Sun at Nanyang Technological University and his colleagues at Jilin and Xiangtan Universities have developed a new method to simulate these properties accurately. Their work has also helped to clarify the physical basis of the behaviour.

The key to their model is in considering O\(\cdots\)H–O as the basic structural unit of ice. The left hand oxygen forms a hydrogen bond using its lone pair of electrons to polarise electron density around the hydrogen. Meanwhile, the hydrogen shares its electron with the right hand oxygen to form a real bond.

Sun’s model works better for the system than commonly used rigid non-polarisable models. Such models ‘have a fixed molecular geometry so they cannot intrinsically account for changes in the molecular geometry,’ according to Jose Abascal, an expert on the theoretical chemistry of water and ice, Universidad Complutense de Madrid, Spain. The rigid models ‘approximate the H2O molecule as two point charges with a fixed bond length and bond angle,’ explains Sun. However, ‘what changes with the applied stimulus are the angle, length and energy of the hydrogen bond and the associated electron polarisation.’

Sun’s results indicate that the repulsion between the lone pair and bonding pair causes the O\(\cdots\)H hydrogen bond to shorten and the O-H real bond to lengthen. At sufficiently high pressure, the hydrogen bond and real bond become equivalent in length. The change in binding energy of the real bond dominates, causing the observed effects on physical quantities as it lengthens and weakens.

Sun now anticipates that there is further work to be done in unravelling the many other anomalies of ice, including why freezing water expands.

Reference

C.Q. Sun, X. Zhang, W Zheng, Chem Sci., 2012, doi:10.1039/c2sc20066j

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sun, C.Q., Sun, Y. (2016). Mechanical Compression. In: The Attribute of Water. Springer Series in Chemical Physics, vol 113. Springer, Singapore. https://doi.org/10.1007/978-981-10-0180-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0180-2_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0178-9

  • Online ISBN: 978-981-10-0180-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics