Skip to main content
Log in

Bifurcation and Chaos of Functionally Graded Carbon Nanotube Reinforced Composite Cylindrical Shell with Piezoelectric Layer

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

This paper investigates bifurcation and chaos of functionally graded carbon nanotube-reinforced composites (FG-CNTRCs) cylindrical shells containing piezoelectric layer (PL) under combined electro-thermo-mechanical loads. We assumed that FG-CNTRC material properties were graded along thickness direction and determined them using mixtures’ law. Governing equations of structures were derived according to the theory of von Kármán nonlinear shell and PL with thermal effects. Next, the governing equations were transformed into second order nonlinear ordinary differential equations (SNODE) with cubic terms through Galerkin procedure and further into first order nonlinear ordinary differential equations (FNODE) through introducing additional state variables. Complex system dynamic behavior was qualitatively examined using fourth order Runge-Kutta method. The effects of different factors including applied voltage, volume fraction, temperature change, and distribution of carbon nanotubes (CNTs) on bifurcation and chaos of FG-CNTRC shells with PL were comprehensively studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10

Similar content being viewed by others

REFERENCES

  1. R. Gholami and R. Ansari, “The effect of initial geometric imperfection on the nonlinear resonance of functionally graded carbon nanotube-reinforced composite rectangular plates,” J. Appl. Math. Mech. -Engl. Transl. 39, 1219–1238 (2018). https://doi.org/10.1007/s10483-018-2367-9

    Article  Google Scholar 

  2. M. Mohammadimehr and R. Rostami, “Bending and vibration analyses of a rotating sandwich cylindrical shell considering nanocomposite core and piezoelectric layers subjected to thermal and magnetic fields,” J. Appl. Math. Mech. -Engl. Transl. 39, 219–240 (2018). https://doi.org/10.1007/s10483-018-2301-6

    Article  MATH  Google Scholar 

  3. Ö. Civalek and A. K. BaltacıoGlu, “Vibration of carbon nanotube reinforced composite (CNTRC) annular sector plates by discrete singular convolution method,” Compos. Struct. 203, 458–465 (2018). https://doi.org/10.1016/j.compstruct.2018.07.037

    Article  Google Scholar 

  4. X. Y. Guo and W. Zhang, “Nonlinear vibrations of a reinforced composite plate with carbon nanotubes,” Compos. Struct. 135, 96–108 (2016). https://doi.org/10.1016/j.compstruct.2015.08.063

    Article  Google Scholar 

  5. A. P. Jorge and G. Rajamohan, “Dynamic response of Carbon-Nanotube-Reinforced-Polymer materials based on multiscale finite element analysis,” Compos. B. Eng. 166, 497–508 (2019). https://doi.org/10.1016/j.compositesb.2019.02.039

    Article  Google Scholar 

  6. X. W. Wang, D. Yang, and S. Yang, “Dynamic stability of carbon nanotubes reinforced composites,” Appl. Math. Model. 38, 2934-2945 (2014). https://doi.org/10.1016/j.apm.2013.11.011

    Article  MathSciNet  MATH  Google Scholar 

  7. A. E. Moumen, M. Tarfaoui, K. Lafdi, et al., “Dynamic properties of carbon nanotubes reinforced carbon fibers/epoxy textile composites under low velocity impact,” Compos. B. Eng. 125, 1–8 (2017). https://doi.org/10.1016/j.compositesb.2017.05.065

    Article  Google Scholar 

  8. M. Mohandes and A. R. Ghasemi, “A new approach to reinforce the fiber of nanocomposite reinforced by CNTs to analyze free vibration of hybrid laminated cylindrical shell using beam modal function method,” Eur. J. Mech. A/Solids 73, 224–234 (2019). https://doi.org/10.1016/j.euromechsol.2018.09.006

  9. O. A. Fiorenz and l. Fazzo, “Thermo elastic vibration and stability of temperature dependent carbon nanotube reinforced composite composite plates,” Compos. Struct. 196, 199–214 (2018). https://doi.org/10.1016/j.compstruct.2018.04.026

    Article  Google Scholar 

  10. H. Chien, A. J. Thai, M. Ferreira, et al., “A naturally stabilized nodal integration meshfree formulation for carbon nanotube-reinforced composite plate analysis,” Eng. Anal. Bound. Elements 92,136-155 (2018). https://doi.org/10.1016/j.enganabound.2017.10.018

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Kamarian, M. Salim, R. Dimitdi, et al., “Free vibration analysis of conical shells reinforced with agglomerated Carbon Nanotubes,” Int. J. Mech. Sci. 108–109, 157–165 (2016). https://doi.org/10.1016/j.ijmecsci.2016.02.006

  12. M. Vinyas, “A higher-order free vibration analysis of carbon nanotube reinforced magneto-electro- elastic plates using finite element methods,” Compos. B. Eng. 158, 286–301 (2019). https://doi.org/10.1016/j.compositesb.2018.09.086

    Article  Google Scholar 

  13. H. S. Shen, “Nonlinear bending of functionally graded carbon nanotube reinforced composite plates in thermal environments,” Compos. Struct. 91, 9–19 (2009). https://doi.org/10.1016/j.compstruct.2009.04.026

    Article  Google Scholar 

  14. A. Frikha, S. Zghal, and F. Dammak, “Dynamic analysis of functionally graded carbon nanotubes-reinforced plate and shell structures using a double directors finite shell element,” Aerosp. Sci. Technol. 78, 438–451 (2018). https://doi.org/10.1016/j.ast.2018.04.048

    Article  MATH  Google Scholar 

  15. J. Peng, Z. P. Chen, Y. Li, et al., “Dynamic buckling analyses of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) cylindrical shell under axial power-law time- varying displacement load,” Compos. Struct. 220, 784–797 (2019). https://doi.org/10.1016/j.compstruct.2019.04.048

    Article  Google Scholar 

  16. S. Chakraborty, T. Dey, and R. Kumar, “Stability and vibration analysis of CNT-Reinforced functionally graded laminated composite cylindrical shell panels using semi-analytical approach,” Compos. B. Eng. 168, 1–14 (2019). https://doi.org/10.1016/j.compositesb.2018.12.051

    Article  Google Scholar 

  17. J. Zhao, K. Choe, C. J. Shuai, et al., “Free vibration analysis of functionally graded carbon nanotube reinforced composite truncated conical panels with general boundary conditions,” Compos. B. Eng. 160, 225–240 (2019). https://doi.org/10.1016/j.compositesb.2018.09.105

    Article  Google Scholar 

  18. Z. Y. Qin, X. J. Pang, B. Safaei, et al., “Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions,” Compos. Struct. 220, 847–860 (2019). https://doi.org/10.1016/j.compstruct.2019.04.046

    Article  Google Scholar 

  19. M. Mirzaei and Y. Kiani, “Free vibration of functionally graded carbon nanotube reinforced composite cylindrical panels,” Compos. Struct. 142, 45–56 (2016). https://doi.org/10.1016/j.compstruct.2015.12.071

    Article  Google Scholar 

  20. D. R. Moradi, M. Foroutan, and A. Pourasghar, “Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-free method,” Mater. Des. 44, 256–266 (2013). https://doi.org/10.1016/j.matdes.2012.07.069

    Article  MATH  Google Scholar 

  21. M. Heshmati and M. H. Yas, “Dynamic analysis of functionally graded multi-walled carbon nanotube-polystyrene nanocomposite beams subjected to multi-moving loads,” Mater. Des. 49, 894–904 (2013). https://doi.org/10.1016/j.matdes.2013.01.073

    Article  Google Scholar 

  22. R. Zhong, Q. Wang, and J. Tang, “Vibration analysis of functionally graded carbon nanotube reinforced composites (FG-CNTRC) circular, annular and sector plates,” Compos. Struct. 194, 49–67 (2018). https://doi.org/10.1016/j.compstruct.2018.03.104

    Article  Google Scholar 

  23. D. Nguyen, Q. Tran, and D. K. Nguyen, “New approach to investigate nonlinear dynamic response and vibration of imperfect functionally graded carbon nanotube reinforced composite double curved shallow shells subjected to blast load and temperature,” Aerosp. Sci. Technol. 71, 360–372 (2017). https://doi.org/10.1016/j.ast.2017.09.031

    Article  Google Scholar 

  24. N. Fantuzzi, F. Tornabene, and M. Bacciocchi, “Free vibration analysis of arbitrarily shaped functionally graded Carbon Nanotube-reinforced plates,” Compos. B. Eng. 115, 384–408 (2017).

    Article  Google Scholar 

  25. Z. Shi, X. Yao, and F. Pang, “A semi-analytical solution for in-plane free vibration analysis of functionally graded carbon nanotube reinforced composite circular arches with elastic restraints,” Compos. Struct. 182, 420–434 (2017). https://doi.org/10.1016/j.compstruct.2017.09.045

    Article  Google Scholar 

  26. S. Chakraborty, T. Dey, and R. Kumar, “Stability and vibration analysis of CNT-Reinforced functionally graded laminated composite cylindrical shell panels using semi-analytical approach,” Compos. B. Eng. 168, 1–14 (2019). https://doi.org/10.1016/j.compositesb.2018.12.051

    Article  Google Scholar 

  27. M. Rafiee, X.Q. He, and K.M. Liew, “Non-linear dynamic stability of piezoelectric functionally graded carbon nanotube- reinforced composite plates with initial geometric imperfection,” Int. J. Non-Lin. Mech. 59 (1), 37–51 (2014). https://doi.org/10.1016/j.ijnonlinmec.2013.10.011

    Article  Google Scholar 

  28. M. Rezaee and R. Jahangiri, “Nonlinear and chaotic vibration and stability analysis of an aero-elastic piezoelectric FG plate under parametric and primary excitations,” J. Sound Vib. 344, 277–296 (2015). https://doi.org/10.1016/j.jsv.2015.01.025

    Article  ADS  Google Scholar 

  29. Y. Kiani, “Free vibration of functionally graded carbon nanotube reinforced composite plates integrated with piezoelectric layers,” Comput. Math. Appl. 72 (9), 2433–2449 (2016). https://doi.org/10.1016/j.camwa.2016.09.007

    Article  MathSciNet  MATH  Google Scholar 

  30. A. A. Alibeigloo and Z. Pasha, “Thermo-electro-elasticity solution of functionally graded carbon nanotube reinforced composite cylindrical shell embedded in piezoelectric layers,” Compos. Struct. 173, 268–280 (2017). https://doi.org/10.1016/j.compstruct.2017.04.027

    Article  Google Scholar 

  31. R. Ansari, T. Pourashraf, R.Gholami, et al., “Analytical solution for nonlinear postbuckling of functionally graded carbon nanotube-reinforced composite shells with piezoelectric layers,” Compos. B. Eng. 90, 267–277(2016). https://doi.org/10.1016/j.compositesb.2015.12.012

    Article  Google Scholar 

  32. S. P. Hamed, G. Babak, and G. Majid, “Buckling and free vibration analysis of high speed rotating carbon nanotube reinforced cylindrical piezoelectric shell,” Appl. Math. Model. 65, 428–442 (2019). https://doi.org/10.1016/j.apm.2018.08.028

    Article  MathSciNet  MATH  Google Scholar 

  33. D. G. Ninh, “Nonlinear thermal torsional post-buckling of carbon nanotube-reinforced composite cylindrical shell with piezoelectric actuator layers surrounded by elastic medium,” Thin-Wall. Struct. 123, 528–538 (2018). https://doi.org/10.1016/j.tws.2017.11.027

  34. M. Rafiee, J. Yang, and S. Kitipornchai, “Thermal bifurcation buckling of piezoelectric carbon nanotube reinforced composite beams,” Comput. Math. Appl. 66 (7), 1147–1160 (2013).

  35. D. G. Ninh, N. D. Tien, and V. N. V. Hoang, “Vibration of cylindrical shells made of three layers W–Cu composite containing heavy water using Flügge-Lur’e-Bryrne theory,” Thin-Wall. Struct. 146, 106414 (2020). https://doi.org/10.1016/j.tws.2019.106414

  36. D.G. Ninh, H. Eslami, and V. N. V. Hoang, “Dynamical behaviors of conveying-fluid nanocomposite toroidal shell segments with piezoelectric layer in thermal environment using the Reddy’s third-order shear deformation shell theory,” Thin-Wall. Struct. 159, 107204(2021). https://doi.org/10.1016/j.tws.2020.107204

    Article  Google Scholar 

  37. N. D. Tien, V. N. V. Hoang, and D. G. Ninh, “Nonlinear dynamics and chaos of a nanocomposite plate subjected to electro-thermo-mechanical loads using Flügge-Lur’e-Bryrne theory,” J. Vib. Control. 27 (9–10), 1184–1197 (2020). https://doi.org/10.1177/1077546320938185

  38. L. W. Zhang, Z. G. Song, and P. Z. Qiao, “Modeling of dynamic responses of CNT-reinforced composite cylindrical shells under impact loads,” Comput. Method. Appl. Mech. Eng. 313, 889–903 (2017). https://doi.org/10.1016/j.cma.2016.10.020

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. D. G. Ninh and N. D. Tien, “Investigation for electro-thermo-mechanical vibration of nanocomposite cylindrical shells with an internal fluid flow,” Aerosp. Sci. Technol. 92, 501-519 (2019). https://doi.org/10.1016/j.ast.2019.06.023

    Article  Google Scholar 

  40. D. G. Ninh, N.D. Tien, and V. N. V. Hoang, “Analyses of nonlinear dynamics of imperfect nanocomposite circular cylindrical shells with swirling annular and internal fluid flow using higher order shear deformation shell theory,” Eng. Struct. 198, 109502 (2019). https://doi.org/10.1016/j.engstruct.2019.109502

    Article  Google Scholar 

  41. V. N. V. Hoang, V. T. Minh, D. G. Ninh, et al., “Effects of non-uniform elastic foundation on the nonlinear vibration of nanocomposite plates in thermal environment using Selvadurai methodology,” Compos. Struct. 253, 112812 (2020). https://doi.org/10.1016/j.compstruct.2020.112812

    Article  Google Scholar 

  42. V. N. V. Hoang, D.G. Ninh, D.V. Truong, et al., “Behaviors of dynamics and stability standard of graphene nanoplatelet reinforced polymer corrugated plates resting on the nonlinear elastic foundations,” Compos. Struct. 260, 113253 (2021). https://doi.org/10.1016/j.compstruct.2020.113253

    Article  Google Scholar 

  43. D. G. Ninh, V. N. V. Hoang, and V. L. Huyc, “A new structure study: Vibrational analyses of FGM convex-concave shells subjected to electro-thermal-mechanical loads surrounded by Pasternak foundation,” Eur. J. Mech. A-Solid 86, 104168 (2021). https://doi.org/10.1016/j.euromechsol.2020.104168

    Article  MATH  Google Scholar 

Download references

Funding

This study was supported by “First Class Universities and Disciplines of the World” construction project of Changsha University of Science and Technology ( 2019IC02); Innovative project of Changsha University of Science and Technology (18ZDXK09); Hunan education Department (19A033); Hunan education Department (16A003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinhua Yang or Guo Fu.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Sun, G. & Fu, G. Bifurcation and Chaos of Functionally Graded Carbon Nanotube Reinforced Composite Cylindrical Shell with Piezoelectric Layer. Mech. Solids 56, 856–872 (2021). https://doi.org/10.3103/S0025654421050186

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654421050186

Keywords:

Navigation