Skip to main content
Log in

On Fracture of Pseudo-Graphenes

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract—Molecular dynamics is used to study the fracture of pseudo-graphenes, namely, allotropic forms of carbon that are modifications of graphene with a high density of periodically distributed disclinations with zero total charge. Disclinations in pseudo-graphenes are associated with improper carbon rings, that is, rings having 4, 5, 7, or 8 members, in contrast to the proper 6-member carbon rings constituting the ideal crystal lattice of graphene. Pseudo-graphenes, which have a significant excess of energy relative to graphene, show a significant (up to 50%) decrease in the critical tensile stress compared to defect-free graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. S. Novoselov, et al., “Electric field effect in atomically thin carbon films,” Science 306 (5696), 666–669 (2004).

    ADS  Google Scholar 

  2. K. Kaasbjerg, K. S. Thygesen, and K. W. Jacobsen, “Phonon-limited mobility in n-type ssingle-layer MoS 2 from first principles,” Phys. Rev. B 85 (11), 115317 (2012).

    ADS  Google Scholar 

  3. D. Golberg, et al., “Boron Nitride Nanotubes and Nanosheets,” ACS Nano 4 (6), Z979–2993 (2010).

    Google Scholar 

  4. H. Yang, et al., “Graphene barristor, a triode device with a gate-controlled schottky barrier,” Science 336 (6085), 1140–1143 (2012).

    ADS  Google Scholar 

  5. F. Xia, et al., “Photocurrent Imaging and Efficient Photon Detection in a Graphene Transistor,” Nano Lett. 9 (3), 1039–1044 (2009).

    ADS  Google Scholar 

  6. C. Lee, et al., “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321 (5887), 385–388 (2008).

    ADS  Google Scholar 

  7. J. W. Jiang, J. S. Wang, and B. Li, “Young’s modulus of graphene: A molecular dynamics study,” Phys. Rev. B 80 (11), 113405 (2009).

    ADS  Google Scholar 

  8. J. N. Grima, et al., “Tailoring graphene to achieve negative Poisson’s ratio properties,” Adv. Mater. 27 (8), 1455–1459 (2015).

    Google Scholar 

  9. B. D. Jensen, K. E. Wise, and G. M. Odegard, “Simulation of the elastic and ultimate tensile properties of diamond, graphene, carbon nanotubes, and amorphous carbon using a revised ReaxFF parametrization,” J. Phys. Chem. A 119 (37), 9710–9721 (2015).

    Google Scholar 

  10. S. Baradaran, et al., “Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite,” Carbon 69, 32–45 (2014).

    Google Scholar 

  11. X. Huang, et al., “Graphene-based composites,” Chem. Soc. Rev. 41 (2), 666–686 (2012).

    Google Scholar 

  12. Z. Wang, et al., “Phagraphene: a low-energy graphene allotrope composed of 5–6–7 carbon rings with distorted dirac cones,” Nano Lett. 15 (9), 6182–6186 (2015).

    ADS  Google Scholar 

  13. C. P. Tang and S. J. Xiong, “A graphene composed of pentagons and octagons,” AIP Adv. 2 (4), 042147 (2012).

    ADS  Google Scholar 

  14. B. R. Sharma, A. Manjanath, and A. K. Singh, “Pentahexoctite: a new two-dimensional allotrope of carbon,” Sci. Rep. 4, 7164 (2014).

    ADS  Google Scholar 

  15. W. F. Harris, “Disclinations,” Sci. Am. 237 (6), 130–145 (1977).

    Google Scholar 

  16. M. A. Rozhkov, et al., “Disclination ensembles in graphene,” Low Temp. Phys. 44 (9), 918–924 (2018).

    ADS  Google Scholar 

  17. A. E. Romanov, M. A. Rozhkov, and A. L. Kolesnikova, “Disclinations in polycrystalline graphene and pseudo-graphenes. review,” Lett. Mat. 8 (4), 384–400 (2018).

    Google Scholar 

  18. M. A. Rozhkov, et al., “Evolution of dirac cone in disclinated graphene,” Rev. Adv. Mater. Sci. 57 (2), 137–142 (2018).

    Google Scholar 

  19. B. J. Alder and T. E. Wainwright, “Phase transition for a hard sphere system,” J. Chem. Phys. 27 (5), 1208–1209 (1957).

    ADS  Google Scholar 

  20. S. J. Stuart, A. B. Tutein, and J. A. Harrison, “A reactive potential for hydrocarbons with intermolecular interactions,” J. Chem. Phys. 112 (14), 6472–6486 (2000).

    ADS  Google Scholar 

  21. J. Tersoff, “New empirical approach for the structure and energy of covalent systems,” Phys. Rev. B. 37 (12), 6991 (1988).

    ADS  Google Scholar 

  22. O. A. Shenderova, et al., “Atomistic modeling of the fracture of polycrystalline diamond,” Phys. Rev. B 61 (6), 3877 (2000).

    ADS  Google Scholar 

  23. H. Zhao, K.Min, and N. R. Aluru, “Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension,” Nano Lett. 9 (8), 3012–3015 (2009).

    ADS  Google Scholar 

  24. Y. Chu, T. Ragab, and C. Basaran, “The size effect in mechanical properties of finite-sized graphene nanoribbon,” Comput. Mater. Sci. 81, 269–274 (2014).

    Google Scholar 

  25. LAMMPS. http://lammps.sandia.gov.

  26. OVITO—The Open Visualization Tool. http://www.ovito.org/.

  27. E. Polak, and G. Ribiere, “Note sur la convergence de methodes de directions conjuguees,” rev. franc. d’inform. rech. operation., Ser. Rouge. 3 (1), 35–43 (1969).

    MATH  Google Scholar 

  28. H. Zhao, K. Min, and N. R. Aluru, “Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension,” Nano Lett. 9 (8), 3012–3015 (2009).

    ADS  Google Scholar 

  29. M. A. N. Dewapriya, R. Rajapakse, A. S. Phani, “Molecular Dynamics Simulation of Fracture of Graphene,” in Proc. Int. Conf. Fract., 13st (ICF13, 2013), Vol. 1, pp. 847–852.

  30. A. S. Kochnev, I. A. Ovid’ko, and B. N. Semenov, “Tensile strength of graphene containing 5-8-5 defects,” Rev. Adv. Mat. Sci. 37 (1/2), 105–110 (2014).

    Google Scholar 

  31. S. P. Kiselev and E. V. Zhirov, “Molecular dynamics simulation of deformation and fracture of graphene under uniaxial tension,” Phys. Mesomech. 16 (2), 125–132 (2013).

    Google Scholar 

  32. Y. Y. Zhang and Y. T. Gu, “Mechanical properties of graphene: effects of layer number, temperature and isotope,” Comp. Mat. Sci. 71, 197–200 (2013).

    ADS  Google Scholar 

  33. M. Q. Chen, et al., “Effects of grain size, temperature and strain rate on the mechanical properties of polycrystalline graphene—a molecular dynamics study,” Carbon 85, 135–146 (2015).

    Google Scholar 

  34. Q. X. Pei, Y. W. Zhang, and V. B. Shenoy, “Mechanical properties of methyl functionalized graphene: a molecular dynamics study,” Nanotechnology 21 (11), 115709 (2010).

    ADS  Google Scholar 

  35. G. Cao, “Atomistic studies of mechanical properties of graphene,” Polymers 6 (9), 2404–2432 (2014).

    Google Scholar 

  36. Y. I. Jhon, et al., “Grain boundaries orientation effects on tensile mechanics of polycrystalline graphene,” RSC Adv. 3 (25), 9897–9903 (2013).

    Google Scholar 

  37. B. Mortazavi and S. Ahzi, “Thermal conductivity and tensile response of defective graphene: a molecular dynamics study,” Carbon 63, 460–470 (2013).

    Google Scholar 

  38. Y. Y. Zhang, Q. X. Pei, and C. M. Wang, “Mechanical properties of graphynes under tension: a molecular dynamics study,” Appl. Phys. Lett. 101 (8), 081909 (2012).

    ADS  Google Scholar 

  39. T. H. Liu, C. W. Pao, and C. C. Chang, “Effects of dislocation densities and distributions on graphene grain boundary failure strengths from atomistic simulations,” Carbon 50 (10), 3465–3472 (2012).

    Google Scholar 

  40. A. E. Galashev and O. R. Rakhmanova, “Mechanical and thermal stability of graphene and graphene-based materials,” Phys. Usp. 57 (10), 970–989 (2014).

  41. L. Xu, N. Wei, and Y. Zheng, “Mechanical properties of highly defective graphene: from brittle rupture to ductile fracture,” Nanotechnology 24 (50), 505703 (2013).

    ADS  Google Scholar 

  42. X. Sun, et al., “Effects of vacancy defect on the tensile behavior of graphene,” Theor. Appl. Mech. Lett. 4 (5), 051002 (2014).

    ADS  Google Scholar 

  43. M. A. N. Dewapriya, R. Rajapakse, and A. S. Phani, “Atomistic and continuum modelling of temperaturedependent fracture of graphene,” Int. J. Fract. 187 (2), 199–212 (2014).

    Google Scholar 

  44. J. Han, N. M. Pugno, and S. Ryu, “Nanoindentation cannot accurately predict the tensile strength of graphene or other 2D materials,” Nanoscale 7 (38), 15672–15679 (2015).

    ADS  Google Scholar 

  45. M. Daly, M. Reeve, and C. V. Singh, “Effects of topological point reconstructions on the fracture strength and deformation mechanisms of graphene,” Comp. Mat. Sci. 97, 172–180 (2015).

    Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (RFBR) (project no. 18-01-00884 A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Romanov.

Additional information

Translated by A.A. Borimova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnikova, A.L., Rozhkov, M.A. & Romanov, A.E. On Fracture of Pseudo-Graphenes. Mech. Solids 55, 69–76 (2020). https://doi.org/10.3103/S0025654420010124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654420010124

Keywords:

Navigation