Skip to main content
Log in

Heat pipes application to solar energy systems

  • Solar Power Plants and Their Application
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

Today widespread application of energy-saving equipment based on heat pipes makes a significant contribution to the task of resources saving. Using the heat pipes as heat transfer and heat exchange design elements allows creating new effective equipment generation for solar energy systems. Heat pipes are widely used both to improve the outdated equipment, increase its efficiency, reliability and lifetime and in the creation of new high-quality and economic technology samples. Up to the present day there are the following systems and solar energy equipment where heat pipes are widely used: photovoltaic-thermal solar collectors, solar thermal collectors, concentrating photovoltaic and concentrating solar plant. The article presents an analysis of the current state and prospects of heat pipes using in solar energy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pareto, V.E.I.V. and Pareto, M.P., The urban component of the energy crisis, MPRA Pap., University Library of Munich, 2008, no. 13989.

    Google Scholar 

  2. Wim Depraetere, Integrated design solution for the multifunctional skin of an office building, Proc. Conf. on Advanced Building Skins, Bressanone, Nov. 5–6, 2013, pp. 41–45.

    Google Scholar 

  3. Voss, K. and Musall, E., Net Zero Energy Buildings. Detail Green Book, 2012.

    Google Scholar 

  4. Bezrodny, M.K., Pioro, I.L., and Kostyuk, T.O., Transfer Processes in Two-Phase Thermosyphone Systems. Theory and Practice, Kiev: Fact, 2005.

    Google Scholar 

  5. Marcia B. H. Mantelli. “Thermosyphon Technology for Industrial Applications” in Handbook Heat Pipes and Solid Sorption Transformations: Fundamentals and Practical Applications, L.L. Vasiliev, Sadik Kakaç, Eds., CRC Press Taylor & Francis Group, 2013, pp. 411–464.

  6. Peterson, G.P., An Introduction to Heat Pipes: Modelling, Testing and Application, Wiley, 1994.

    Google Scholar 

  7. Vasiliev, L.L., et al., Low-Temperature Heat Pipes, Minsk: Science and Technology, 1976.

    Google Scholar 

  8. Gaugler, R.S., US Patent 2350348, 1944.

    Google Scholar 

  9. Gaugler, R.S., US Patent 3229759, 1966.

    Google Scholar 

  10. Dunn, P.D. and Reay, D.A., Heat Pipes, Oxford UK: Pergamon Press, 1982.

    Google Scholar 

  11. Reay, D.A. and Kew, P.A., Heat Pipes, Elsevier, 2006.

    Google Scholar 

  12. Singh Randeep, Mochizuki Masataka, Nguyen Thang, and Akbarzadeh Aliakbar, Applications of heat pipes in energy conservation and renewable energy based systems, Frontiers Heat Pipes (FHP), 2011, vol. 2, p. 033003.

    Google Scholar 

  13. Constatntinos, A. and Bouroussis, F.V.T., Optimization of potential and autonomy of a photovoltaic system for street lighting, WSEAS Trans. Circuits Syst., 2004, vol. 3, pp. 1392–1397.

    Google Scholar 

  14. Heat Pipes in the Systems with Renewable Energy Sources, Vasiliev, L.L., Ed., Minsk: Science and Technology, 1988.

  15. Walker, A., Mahjouri, F., and Stiteler, R., Evacuatedtube heat-pipe solar collectors applied to the recirculation loop in a federal building, Preprint, NREL Report, 2004, no. CP-710-36149.

    Google Scholar 

  16. Launay, S. and Vallee, M., State-of-the-art experimental studies loop heat pipes, Frontiers Heat Pipes (FHP), 2011, vol. 2, p. 013003.

    Article  Google Scholar 

  17. Taft, B.S., Williams, A.D., and Drolen, B.L., Review of pulsating heat pipe working fluid selection, J. Thermophys. Heat Transf., 2012, vol. 26, no. 4, pp. 651–656.

    Article  Google Scholar 

  18. Bezrodny, M.K., Fundamental questions of closed twophase thermosyphons, in Handbook. Heat Pipes and Solid Sorption Transformations: Fundamentals and Practical Applications, Vasiliev, L.L. and Kakac, S., Eds., CRC Press, Taylor & Francis Group, 2013, pp. 319–356.

    Chapter  Google Scholar 

  19. Semena, M.G., Gershuni, A.N., and Zaripov, V.K., Heat Pipes with Metal-Fiber Capillary Structures, Kiev: Vyscha shkola, 1984.

    Google Scholar 

  20. Vasiliev, L.L., Heat pipes in modern heat exchangers, Appl. Therm. Eng., 2005, vol. 25, no. 1, pp. 1–19.

    Article  MathSciNet  Google Scholar 

  21. Lefèvre, F., Rullière, R., pandraud, G., and Lallemand, M., Prediction of the temperature field in flat plate heat pipes with micro-grooves–experimental validation, Int. J. Heat Mass Transf., 2008, vol. 51, nos. 15–16, pp. 4083–4094.

    Article  MATH  Google Scholar 

  22. Khandekar, S., Charoensawan, P., Groll, M., and Terdtoon, P., Closed loop pulsating heat pipes. Part B: visualization and semi-empirical modeling, Appl. Therm. Eng., 2003, vol. 23, no. 16, pp. 2021–2033.

    Google Scholar 

  23. Burch, J., An overview of one-sun solar thermal technology, Proc. SEET Solar Thermal Seminar, July 26, 2007.

    Google Scholar 

  24. Brunold, S., Frey, R., and Frei, U., A comparison of three different collectors for process heat applications, Proc. SPIE Optical Materials Technology for Energy Efficiency and Solar Energy Conversion 13, Sept. 9, 1994. doi: 10.1117/12.185361

    Google Scholar 

  25. Riffat, S.B., Doherty, P.S., and Abdel Aziz, E.I., Performance testing of different types of liquid flat plate collectors, Int. J. Energy Res., 2000, vol. 24, no. 13, pp. 1203–1215.

    Article  Google Scholar 

  26. wwwhtproductscom/literature/lp-230pdf

  27. Facão, J. and Oliveira Armando, C., Analysis of a plate heat pipe solar collector, Proc. SET 2004 Int. Conf. on Sustainable Energy Technologies, Nottingham, June 28–30, 2004.

    Google Scholar 

  28. Khairnasov, S.M., Zaripov, V.K., Passamakin, B.M., and Kozak, D.V., The study of the heat engineering characteristics a solar heat collector based on aluminum heat pipe, Appl. Solar Energy, 2013, vol. 49, no. 4, pp. 225–231.

    Article  Google Scholar 

  29. Khairnasov, S., Rassamakin, B., Musiy, R., and Rassamakin, A., Solar collectors of buildings facade based on aluminum heat pipes with colored coating, J. Civil Eng. Architect., 2013, vol. 7, no. 4, pp. 403–409.

    Google Scholar 

  30. Mehmet, A., Development of heat pipes for solar water heaters, Solar Energy, 1984, vol. 32, pp. 625–631.

    Article  Google Scholar 

  31. Hussein, H.M.S., Mohamad, M.A., and ElAstouri, A.S., Optimization of a wickless heat pipe flat plate solar collector, Energy Convers. Manag., 1999, vol. 40, pp. 1949–1961.

    Article  Google Scholar 

  32. Sivaraman, B. and Mohan N.K., Experimental analysis of heat pipe solar collector with different L/d ratio of heat pipe, J. Sci. Industr. Res., 2005, vol. 64, pp. 698–701.

    Google Scholar 

  33. Azad, E., Theoretical and experimental investigation of heat pipe solar collector, Experim. Therm. Fluid Sci., 2008, vol. 32, pp. 1666–1672.

    Article  Google Scholar 

  34. Sivakumar, K., Mohan, N.K., and Sivaraman, B., Performance analysis of elliptical heat pipe solar collector, Indian J. Sci. Technol., 2011, vol. 4, no. 1, pp. 4–7.

    Google Scholar 

  35. Taoufik Brahim, Foued Mhiri, and Abdelmajid Jemni, Parametric study of a flat plate wick assisted heat pipe solar collector, J. Solar Energy Eng., 2013, vol. 135, no. 3, pp. 345–354.

    Article  Google Scholar 

  36. Rockendorf, G., Abschlussbericht zum Vorhaben “Wärmerohre in Sonnenkollektoren, Wärmetechnische Grundlagen und Bewertung sowie neue Ansätze für die Integration”, Emmerthal: Institut fur Solarenergieforschung GmbH Hameln, 2013.

    Google Scholar 

  37. Jack, S., Föste, S., Schiebler, B., and Giovannetti, F., Neuartige Kollektoren mit Wärmerohren zur Begrenzung der Stagnationstemperatur und Reduzierung der Systemkosten, in: Proc. 24th Symp Thermische Solarenergie (Tagungsband) OTTI e.V. (Hrsg.), Regensburg, May, 2014, p. 20.

    Google Scholar 

  38. Deng Yue Chao, Quan Zhen Hua, Zhao Yao Hua, and Wang Lin Cheng, Experimental investigations on the heat transfer characteristics of micro heat pipe array applied to flat plate solar collector, Sci. China Technol. Sci., 2013, vol. 56, no. 5, pp. 1177–1185.

    Article  Google Scholar 

  39. Borodkin, A., Pustyakov, J., Samoilov, A., et al., Autonomous system of solar heat supply, Proc. 9th Int. Heat Pipe Conf., Albuquerque, NM, May 1–5, 1995, pp. 845–855.

    Google Scholar 

  40. Khairnasov, S., Rassamakin, B., Anisimova, A., and Naumova, A., Design and study of aluminium profile thermosyphons for photovoltaic-thermal solar collector, Int. J. Heat Pipe Sci. Technol., 2015, vol. 4, no. 3.

    Google Scholar 

  41. Rassamakin, B., Khairnasov, S., Zaripov, V., Rassamakin, A., and Alforova, O., Aluminium heat pipes applied in solar collectors, Solar Energy, 2013, vol. 94, pp. 145–154.

    Article  Google Scholar 

  42. Antonius, A. and Slaats, A., US Patent US4335709 A, 1982.

    Google Scholar 

  43. Collins, R., Pailthorpe, B., and Bourke, B., US Patent US4834066 A, 1989.

    Google Scholar 

  44. wwwviessmannua/uk/ein-_zweifamilienhaus/produkte/ Solarthermie/

  45. Dr. Mahjouri, F., Vacuum Tube Liquid-Vapor (HeatPipe) Collectors. http://thermotechscom/Downloads/Vacuum%20Tube%20Paperpdf

  46. Leea Sang, Il., Sona Gil Jae, Hanb Kyu, Il., et al., Performance evaluation of the evacuated solar collector using the pulsating heat pipe, Proc. 10th IHPS, Taipei, Nov. 6–9, 2011, pp. 196–200.

    Google Scholar 

  47. Bienert, B., Heat pipes for solar collectors, Proc. 1st Int. Heat Pipe Conf., Stuttgard, 1973.

    Google Scholar 

  48. Liu Yi-Mei, Chung Kung-Ming, Chang Keh-Chin, and Lee Tsong-Sheng, Performance of thermosyphon solar water heaters in series, Energies, 2012, no. 5, pp. 3266–3278.

    Article  Google Scholar 

  49. Affolter, P., Eisenmann, W., Fechner, H., et al., PVT ROADMAP, a European Guide for the Development and Market Introduction of PV-Thermal Technology, 2010.

    Google Scholar 

  50. Zhanga Xingxing, Zhao Xudong, Smitha, S., et al., Review of R&D progress and practical application of the solar photovoltaic/thermal (PV/T) technologies, Renew. Sust. Energy Rev., 2012, vol. 16, pp. 599–617.

    Article  Google Scholar 

  51. Huang, B.J., Liu, T.H., Hung, W.C., and Sun, F.S., Performance evaluation of solar photovoltaic/thermal systems, Solar Energy, 2001, vol. 70, no. 8, p. 443.

    Article  Google Scholar 

  52. Zhao, Y., et al., The experimental research of using novel flat-plate heat pipe for solar cells cooling, Proc. Chinese Thermal Engineering Physics of Heat and Mass Transfer Conf., Shanghai, 2009, pp. 239–241.

    Google Scholar 

  53. Zhao Xudong and Zhang Xingxing, Solar photovoltaic/thermal technologies and their application in building retrofitting, in Handbook Nearly Zero Energy Building Refurbishment, Pacheco Torgal, F., Mistretta, M., Kaklauskas, A., Granqvist, C.G., and Cabeza, L.F., Eds., Springer, 2013, pp. 615–658.

    Chapter  Google Scholar 

  54. Elgart, Y., Rassamakin, B., Khairnasov, S., et al., Australian Patent 2014100354, 2014.

    Google Scholar 

  55. Rassamakin, B., Khairnasov, S., Dusheiko, M., and Alforova, O., Design of photovoltaic-thermal module based on heat pipes, Proc. 28th European PV Solar Energy Conf. and Exhibition, Paris, 2013.

    Google Scholar 

  56. Szymocha K., Lindstrom, D., Olsen, K., US Patent US 20040055631 A1, 2004.

    Google Scholar 

  57. Toyliev, K., Heat Pipes in Passive Solar Heating Systems, Ashgabat, 1983.

    Google Scholar 

  58. Susheela Narasimhan, M. and Keith Sharp, M., Heat pipe augmented passive solar system for buildings, J. Energy Eng., 2001, vol. 127, pp. 18–36.

    Article  Google Scholar 

  59. Albanese, M.V., Robinson, B.S., Brehob, E.G., and Keith Sharp, M., Simulated and experimental performance of a heat pipe assisted solar wall, Solar Energy, 2012, vol. 86, pp. 1552–1562.

    Article  Google Scholar 

  60. Bhattacharya, S.C. and Kapur, V.K., Investigation on the feasibility of using a two-phase thermosiphon, Sun: Man-Kind’s Future Source of Energy, 1978, vol. 1, p. 579.

    Google Scholar 

  61. Collares-Pereira, M., Mendes, F., Brost, O., Gross, M., and Roesler, S., Optimized heat pipe for application in integrated CPCs, in Proc. ISES World Congress, Denver, 1991, pp. 1855–1859.

    Google Scholar 

  62. Khalifa, A.M.A., Taha, M.M.A., and Akyurt, M., Solar cookers for outdoors and indoors, Energy, 1985, vol. 10, no. 7, pp. 819–829.

    Article  Google Scholar 

  63. Khalifa, A.M.A., Akyurt, M., and Taha, M.M.A., Cookers for solar homes, Appl. Energy, 1986, vol. 24, pp. 77–89.

    Article  Google Scholar 

  64. Khalifa, A.M.A., Taha, M.M.A., Mannaa, A., and Akyurt, M., A split-system solar cooker with heat pipes, Energy Convers. Manag., 1986, vol. 26, no. 2, pp. 259–264.

    Article  Google Scholar 

  65. Balzar, A., Stumpf, P., Eckhoff, S., Ackermann, H., and Grupp, M., A solar cooker using vacuum-tube collectors with integrated heat pipes, Solar Energy, 1996, vol. 58, nos. 1–3, pp. 63–68.

    Article  Google Scholar 

  66. Stumpf, P., Balzar, A., Eisenmann, W., et al., Comparative measurements and theoretical modelling of singleand double-stage heat pipe coupled solar cooking systems for high temperatures, Solar Energy, 2001, vol. 71, no. 1, pp. 1–10.

    Article  Google Scholar 

  67. Esen, M., Thermal performance of a solar cooker integrated vacuum-tube collector with heat pipes containing diaaerent refrigerants, Solar Energy, 2004, vol. 76, pp. 751–757.

    Article  Google Scholar 

  68. Beach, R.T. and White, R.M., Heat pipe for passive cooling of concentrator solar cells, Proc. 15th IEEE Photovoltaic Specialists Conf., Orlando, 1981, pp. 75–80.

    Google Scholar 

  69. Farahat, M.A., Improvement in the thermal electric performance of a photovoltaic cells by cooling and concentration techniques, Proc. 39th Int. Universities Power Engineering Conf. (UPEC 2004), New York, Sept. 6–8, 2004, pp. 623–628.

    Google Scholar 

  70. Akbarzadeh, A. and Wadowski, T., Heat pipe-based cooling systems for photovoltaic cells under concentrated solar radiation, Appl. Therm. Eng., 1996, vol. 16, no. 1, pp. 81–87.

    Article  Google Scholar 

  71. Singh Randeep, Mochizuki Masataka, Nguyen Thang, and Akbarzadeh Aliakbar, Application of heat pipes in energy conservation and renewable energy based systems, Frontiers Heat Pipes (FHP), 2011, vol. 2, pp. 1–13.

    Google Scholar 

  72. Anderson, W.G., Dussinger, P.M., Sarraf, D.B., and Tamanna, S., Heat pipe cooling of concentrating photovoltaic cells, Proc. Photovoltaic Specialists Conf., San Diego, 2008, pp. 1–6.

    Google Scholar 

  73. Benuel Sathish Raj, A., Praveen, K.S., Manikandan, G., and Jerry, T.P., An experimental study on the performance of concentrated photovoltaic system with cooling system for domestic applications, Int. J. Eng. Adv. Technol., 2014, vol. 3, no. 6, pp. 97–101.

    Google Scholar 

  74. Plesniak, A., Jones, R., Schwartz, J., et al., Demonstration of high performance concentrating photovoltaic module design for utility scale power generation, Proc. SPIE. High and Low Concentrator Systems for Solar Electric Applications IV, 2008, vol. 7043, pp. 1–5.

    Google Scholar 

  75. Hsin-Jung Huang, Sheng-Chih Shen, and Heiu-Jou Shaw, Design and fabrication of a novel hybrid-structure heat pipe for a concentrator photovoltaic, Energies, 2012, vol. 5, pp. 4340–4349.

    Article  Google Scholar 

  76. Osbora, D., et al., U.S. Patent 4335578, 1982.

    Google Scholar 

  77. Mehos, M.S., Moreno, J.B., Andraka, C.E., et al., U.S. Patent 6487859, 2002.

    Google Scholar 

  78. Laing, D., Thaler, H., Lundstrom, L., et al., Final report: development of advanced hybrid heat pipe receivers in dish/Stirling systems for decentralized power production, Deutsches Zentrum für Luftund Raumfahrt e.V., DLR and Institut für Technische Thermodynamik, 1992.

    Google Scholar 

  79. Baturkin, V., Savchenko, A., Zaripov, V., and Andraka, C., Some aspects of metal fiber structures development for large size high temperature heat pipes–solar receivers, Proc. Int. Conf. “Heat Pipes for Space Application”, Moscow, 2009, p. 7.

    Google Scholar 

  80. Yiding Cao, Separate-type heat pipe solar receivers for concentrating solar power, Frontiers Heat Pipes (FHP), 2015, vol. 6, no. 1, pp. 1–8.

    Google Scholar 

  81. Ivanovskiy, M.N., Sorokin, V.P., Chulkov, B.A., and Yagodkin, I.V., Processing Basics on the Heat Pipes, Moscow: Atomizdat, 1980.

    Google Scholar 

  82. Chi, S., Heat Pipes. Theory and Practice, Moscow: Mashinostroenie, 1981.

    Google Scholar 

  83. Jack, S. and Rockendorf, G., Abschlussbericht zum Vorhaben “Wärmerohre in Sonnenkollektoren–Wärmetechnische Grundlagen und Bewertung sowie neue Ansätze für die Integration”, Emmerthal: Institut für Solarenergieforschung GmbH Hameln, 2013, p. 190.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Khairnasov.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khairnasov, S.M., Naumova, A.M. Heat pipes application to solar energy systems. Appl. Sol. Energy 52, 47–60 (2016). https://doi.org/10.3103/S0003701X16010060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X16010060

Keywords

Navigation