Skip to main content
Log in

Effect of crystallinity and morphology of TiO2 nano-structures on TiO2:P3HT hybrid photovoltaic solar cells

  • Heliotechnical Materials Science
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

A comparative study has been made of hybrid solar cells based on poly(3-hexylthiophene) (P3HT) and different nano-structures of TiO2. Electrospinning, which is a low cost production method for large area nanofibrous films, was employed to fabricate TiO2 nanofibers and spin coating method was employed to fabricate organic-inorganic hybrid solar cells based on P3HT and TiO2 nanostructures. The performance of the hybrid solar cells was analyzed for four density levels of the TiO2 nanostructure. It was found that higher densities of TiO2 leads to more interface area and generates excitons, so that the power conversion efficiency increases to 0.13. TiO2 nanoparticles with power conversion efficiency of 0.15 showed better performance than TiO2 nanofibers because of greater interface area. Also the crystallinity effect of the TiO2 nanostructure on solar cell performance was investigated. Moreover, an improved photovoltaic performance was achieved after the interface modification, and the highest conversion efficiency was obtained from the N719 modified device at 241 nm, short-circuit photocurrent (J sc) of 3.88 mA cm−2, open-circuit voltage (V oc) of 0.09 V and fill factor of 0.16; so that an overall conversion efficiency (η) of 0.35% was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boucle, J., Ravirajanac, P., and Nelson, J., Mater. Chem., 2007, vol. 17, pp. 3141–3153.

    Article  Google Scholar 

  2. Choi, Y.J., Park, H.H., Golledge, S., and Johnson, D., Ceram. Int., 2012, vol. 38, pp. 525–528.

    Article  Google Scholar 

  3. Yen, Yu.Y., Chien, W.C., Ko, Y.H., and Chen, S.-H., Thin Solid Films, 2011, vol. 520, pp. 1503–1510.

    Article  Google Scholar 

  4. Mikroyannidis, J.A., Stylianakis, M., Suresh, P., and Sharma, G.D., Solar Energy Mater. Solar Cells, 2009, vol. 93, pp. 1792–1800.

    Article  Google Scholar 

  5. Vandewal, K., Goris, L., Haeldermans, I., et al., Thin Solid Films, 2008, vol. 516, pp. 7135–7138.

    Article  Google Scholar 

  6. Tai, Q., Zhaob, X., and Yan, F., Mater. Chem., 2010, vol. 20, pp. 7366–7371.

    Article  Google Scholar 

  7. Lu, S., Zeng, L., Wub, T., et al., Solar Energy, 2011, vol. 85, pp. 1967–1971.

    Article  Google Scholar 

  8. Lee, J. and Jho, J.Y., Solar Energy Mater. Solar Cells, 2011, vol. 95, pp. 3152–3156.

    Google Scholar 

  9. Honghong, F., Choi, M., Luan, W., et al., Solid State Electron., 2012, vol. 69, pp. 50–54.

    Article  Google Scholar 

  10. Huang, J.S., Chou, C.Y., and Lin, C.F., Solar Energy Mater. Solar Cells, 2010, vol. 94, pp. 182–186.

    Article  Google Scholar 

  11. Geng, H., Wanga, M., Han, S., and Peng, R., Solar Energy Mater. Solar Cells, 2010, vol. 94, pp. 547–553.

    Article  Google Scholar 

  12. El-Nahass, M.M., Zeyadab, H.M., Abd-El-Rahmana, et al., Solar Energy Mater. Solar Cells, 2007, vol. 91, pp. 1120–1126.

    Article  Google Scholar 

  13. Jiang, X., Chen, F., Qiu, M.W., et al., Solar Energy Mater. Solar Cells, 2010, vol. 94, pp. 2223–2229.

    Article  Google Scholar 

  14. Truong, N.T.N., Kim, W.K., and Park, C., Solar Energy Mater. Solar Cells, 2011, vol. 95, pp. 3009–3014.

    Article  Google Scholar 

  15. Lira-Cantu, M., Chafiq, A., Faissat, J., et al., Solar Energy Mater. Solar Cells, 2010, vol. 95, pp. 1362–1374.

    Article  Google Scholar 

  16. Ferreira, S.R., Davis, R.J., Lee, Y.J., et al., Organ. Electron., 2011, vol. 12, pp. 1258–1263.

    Article  Google Scholar 

  17. Gevorgyan, S.A., et al., Solar Energy Mater. Solar Cells, 2011, vol. 95, pp. 1398–1416.

    Article  Google Scholar 

  18. Arici, E., Hoppe, H., Schäffler, F., et al., Thin Solid Films, 2004, vol. 451, pp. 612–618.

    Article  Google Scholar 

  19. Kavan, L., Rathouský, J., Grätzel, M., and Shklover, V., Microporous Mesoporous Mater., 2001, vol. 44, pp. 653–659.

    Article  Google Scholar 

  20. Van Hal, P.A., Christiaans, M.P.T., Wienk, M.M., et al., Synth. Met., 1999, vol. 101, pp. 4352–4359.

    Google Scholar 

  21. Van Hal, P.A., Wienk, M.M., Kroon, J.M., et al., Adv. Mater., 2003, vol. 15, pp. 118–121.

    Article  Google Scholar 

  22. McGehee, D., Karl, L., and Riede, M., Organ. Electron., 2011, vol. 13, pp. 623–631.

    Google Scholar 

  23. Lancelle, B., Prene, P., Boscher, C., et al., Chem. Mater. Lett., 2006, vol. 18, pp. 6152–6156.

    Article  Google Scholar 

  24. Kwong, C.Y., Djurišic, A.B., Chui, P.C., et al., Chem. Phys. Lett., 2004, vol. 384, pp. 372–375.

    Article  Google Scholar 

  25. Lin, Y.Y., Chu, T.H., Li, S.S., et al., Am. Chem. Soc., 2009, vol. 131, pp. 3644–3649.

    Article  Google Scholar 

  26. Williams, S.S., Hampton, M.J., Gowrishankar, V., et al., Chem. Mater., 2008, vol. 20, pp. 5229–5234.

    Article  Google Scholar 

  27. Mi-Jeong Paek, Tae Woo Kim, and Seong-Ju Hwang, J. Phys. Chem. Solids, 2008, vol. 69, pp. 1444–1446.

    Article  Google Scholar 

  28. Greiner, A. and Wendorff, J.H., Angew. Chem. Int., 2007, vol. 46, pp. 5670–5703.

    Article  Google Scholar 

  29. Li, D., Wang, Y., and Xia, Y., Nano Lett., 2003, vol. 3, pp. 1167–1171.

    Article  Google Scholar 

  30. Wu, S.J., Tai, Q.D., and Yan, F.J., Phys. Chem., 2010, vol. 114, pp. 6197–6200.

    Article  Google Scholar 

  31. Biao, W., Yu Dong, Z., Li Ming, H., Jun Sheng, C., et al., Chinese Sci. Bull., 2010, vol. 55, pp. 228–232.

    Article  Google Scholar 

  32. Zhang, S.X., Kundaliya, D.C., Yu, W., Dhar, S., et al., Appl. Phys., 2007, vol. 102, p. 013701.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Kasaeian.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boroomandnia, A., Kasaeian, A.B., Nikfarjam, A. et al. Effect of crystallinity and morphology of TiO2 nano-structures on TiO2:P3HT hybrid photovoltaic solar cells. Appl. Sol. Energy 51, 34–40 (2015). https://doi.org/10.3103/S0003701X15010065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X15010065

Keywords

Navigation