Skip to main content
Log in

Theoretical prediction of physical parameters of Ge x Sb20−x Te80 (x = 11, 13, 15, 17, 19) bulk glassy alloys

  • Published:
Materials Science-Poland

Abstract

Physical properties of Ge x Sb20−x Te80 (x = 11, 13, 15, 17, 19) bulk glassy alloys are examined theoretically. Lone pair electrons are calculated using an average coordination number (〈r〉) and the number of valence electrons, and are found to decrease with an addition of Ge. Mean bond energy (〈E〉) is proportional to glass transition temperature (T g ) and shows maxima near the chemical threshold. Cohesive energy of the system is calculated using chemical bond approach. A linear relation is found between cohesive energy, band gap (calculated theoretically and confirmed experimentally) and average heat of atomization. All these parameters are increasing with an increase in Ge content. A relation between average single bond energy and photon energy is discussed. Compactness of the structure is measured from the calculated density of the glass. An attempt is made to discuss the results in terms of structure of the glass or equivalently with average coordination number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kamiya T., Tsuchiya M., Jpn. J. Appl. Phys., 44 (2005), 5875.

    Article  Google Scholar 

  2. Guillevic E., Zhang X., Pain T., Calvez L., Adam J.L., Lucas J., Guilloux-Viry M., Ollivier S., Gadret G., Opt. Mater., 31 (2009), 1688.

    Article  Google Scholar 

  3. Todorov R., Tasseva J., Babeva T., Thin Chalcogenide Films for Photonic Applications, in: Massaro A. (Ed.), Photonic Crystals — Innovative Systems, Lasers and Waveguides, Intech, Croatia, 2012, p. 143

    Google Scholar 

  4. Samson L., Phys. Status Solidi RRL., 1–3 (2010), 010.

    Google Scholar 

  5. Lovalskiy, J. Micro/Nanolith. MEMS MOEMS, 84 (2009), 043012.

    Article  Google Scholar 

  6. Bureau B., Boussard-Pledel C., Lucas P., Zhang X., Lucas J., Molecules, 14 (2009), 4337.

    Article  Google Scholar 

  7. Lankhorst M.H.R., Ketelaars B.W.S.M.M., Wolters R.A.M., Nat. Mater., 4 (2005) 347.

    Article  Google Scholar 

  8. Lee S.H., Hwang Y.N., Lee S.Y., Ryoo K.C. Ahn S.J., Koo H.C., Jeong C.W., Kim Y., Koh G.H., Jeong G.T., Jeong H.S., Kim K., VLSI Tech. Dig., 20 (2004), 173.

    Google Scholar 

  9. Tichy L., Ticha H., Mater. Lett., 21 (1994) 313.

    Article  Google Scholar 

  10. Tichy L., Ticha H., J. Non-Cryst. Solids, 189 (1995), 141.

    Article  Google Scholar 

  11. Panukchieva V., Szekers A., Optical Mat., 30(7) (2008), 1088.

    Article  Google Scholar 

  12. Fouad S.S., J. Phys D Appl. Phys., 28 (1995), 2318.

    Article  Google Scholar 

  13. Saffarini G., Schlieper A., Appl. Phys. A-Matter., 61 (1995), 29.

    Article  Google Scholar 

  14. Pamukchieva V., Szekeres A., Todorova K., Fabian M., Svab E., Revay Z, Szentmiklosi L., J. Non-Cryst. Solids, 355 (2009), 2485

    Article  Google Scholar 

  15. Pauling L., The Nature of the Chemical Bond, 3rd ed., Cornell University Press, Ihica, NY, 1960.

    Google Scholar 

  16. Zhenhua L., J. Non-Cryst. Solids, 127 (1991), 298.

    Article  Google Scholar 

  17. Thorpe M.F., Tichy L., Properties and Applications of Amorphous Materials, Kluwer Academic Publishers, London, 2001

    Book  Google Scholar 

  18. Bicerano J., Ovshinsky S.R., J. Non-Cryst. Solids, 74 (1985), 75.

    Article  Google Scholar 

  19. Pattanaik A.K., Srinivasan A., JOAM, 5 (2003), 1161.

    Google Scholar 

  20. Dahshan A., Aly K.A., Philos. Mag., 88 (2008), 361

    Article  Google Scholar 

  21. Deneufville J.P., Rockstad H.K., Stuke J., Brenig W., Amorphous and liquid semiconductors, Taylor & Frances, London, 1974.

    Google Scholar 

  22. Kastner M., Phys. Rev. Lett., 28 (1972), 355.

    Article  Google Scholar 

  23. Kastner M., Phys. Rev. B, 7 (1973), 5237.

    Article  Google Scholar 

  24. Benoit C., Aigrain P., Balkanski, Selected constants relative to semiconductors, Pergamon Press, New York, 1961.

    Google Scholar 

  25. Fouad S.S., Vacuum, 52 (1999), 505.

    Article  Google Scholar 

  26. Sharma I, Tripathi S.K., Barman P.B., Philos. Mag. 88(25), (2008) 3018.

    Article  Google Scholar 

  27. Othman A.A., Aly K.A, Abousehly A.M., Thin Solid Films, 515 (2007), 507.

    Article  Google Scholar 

  28. Fayek S.A., Balboul M. R., Marzouk K.H., Thin Solid Films, 515 (2007) 7281.

    Article  Google Scholar 

  29. Vlcek M., Frumar M., J. Non-Cryst. Solids, 97–98 (1987) 1223.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishu Sharma.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, I., Maheshwari, M. Theoretical prediction of physical parameters of Ge x Sb20−x Te80 (x = 11, 13, 15, 17, 19) bulk glassy alloys. Mater Sci-Pol 32, 661–668 (2014). https://doi.org/10.2478/s13536-014-0249-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13536-014-0249-2

Keywords

Navigation