Skip to main content
Log in

Recent insight in α-glucan metabolism in probiotic bacteria

  • Review
  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

α-Glucans from bacterial exo-polysaccharides or diet, e.g., resistant starch, legumes and honey are abundant in the human gut and fermentation of resistant fractions of these α-glucans by probiotic lactobacilli and bifidobacteria impacts human health positively. The ability to degrade polymeric α-glucans is confined to few strains encoding extracellular amylolytic activities of glycoside hydrolase (GH) family 13. Debranching pullulanases of the subfamily GH13_14 are the most common extracellular GH13 enzymes in lactobacilli, whereas corresponding enzymes are mainly α-amylases and amylopullulanases in bifidobacteria. Extracellular GH13 enzymes from both genera are frequently modular and possess starch binding domains, which are important for efficient catalysis and possibly to mediate attachment of cells to starch granules. α-1,6-Linked glucans, e.g., isomalto-oligosaccharides are potential prebiotics. The enzymes targeting these glucans are the most abundant intracellular GHs in bifidobacteria and lactobacilli. A phosphoenolpyruvate-dependent phosphotransferase system and a GH4 phospho-α-glucosidase are likely involved in metabolism of isomaltose and isomaltulose in probiotic lactobacilli based on transcriptional analysis. This specificity within GH4 is unique for lactobacilli, whereas canonical GH13 31 α-1,6-glucosidases active on longer α-1,6-gluco-oligosaccharides are ubiquitous in bifidobacteria and lactobacilli. Malto-oligosaccharide utilization operons encode more complex, diverse, and less biochemically understood activities in bifidobacteria compared to lactobacilli, where important members have been recently described at the molecular level. This review presents some aspects of α-glucan metabolism in probiotic bacteria and highlights vague issues that merit experimental effort, especially oligosaccharide uptake and the functionally unassigned enzymes, featuring in this important facet of glycan turnover by members of the gut microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

CAZy:

Carbohydrate-Active enZymes database

CBM:

carbohydrate binding module

GH:

glycoside hydrolase

GI:

gastrointestinal tract

GT:

glycosyl transferase family

IMO:

isomaltooligosaccharide

PTS:

phosphotransferase transport system

RS:

resistant starch

References

  • Abou Hachem M., Andersen J.M., Barrangou R., Møller M.S., Fredslund F., Majumder A., Ejby M., Lahtinen S.J., Jacobsen S., Lo Leggio L., Goh Y.J., Klaenhammer T.R. & Svensson B. 2013. Recent insight into oligosaccharide uptake and metabolism in probiotic bacteria. Biocatal. Biotransform. 31: 226–235.

    Article  CAS  Google Scholar 

  • Andersen J.M., Barrangou R., Abou Hachem M., Lahtinen S., Goh Y.J., Svensson B. & Klaenhammer T.R. 2012. Transcriptional analysis of prebiotic uptake and catabolism by Lactobacillus acidophilus NCFM. PloS One 7: e44409.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andersen J.M., Barrangou R., Abou Hachem M., Lahtinen S., Goh Y.J., Svensson B. & Klaenhammer T.R. 2013. Transcriptional analysis of oligosaccharide utilization by Bifidobacterium lactis Bl-04. BMC Genomics 14: 312.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arumugam M., Raes J., Pelletier E., Le Paslier D., Yamada T., Mende D.R., Fernandes G.R., Tap J., Bruls T., Batto J.M., Bertalan M., Borruel N., Casellas F., Fernandez L., Gautier L., Hansen T., Hattori M., Hayashi T., Kleerebezem M., Kurokawa K., Leclerc M., Levenez F., Manichanh C., Nielsen H.B., Nielsen T., Pons N., Poulain J., Qin J., Sicheritz-Ponten T., Tims S., Torrents D., Ugarte E., Zoetendal E.G., Wang J., Guarner F., Pedersen O., de Vos W.M., Brunak S., Dore J., Weissenbach J., Ehrlich S.D. & Bork P. 2011. Enterotypes of the human gut microbiome. Nature 473: 174–180.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barrangou R., Briczinski E.P., Traeger L.L., Loquasto J.R., Richards M., Horvath P., Coute-Monvoisin A.C., Leyer G., Rendulic S., Steele J.L., Broadbent J.R., Oberg T., Dudley E.G., Schuster S., Romero D.A. & Roberts R.F. 2009. Comparison of the complete genome sequences of Bifidobacterium animalis subsp lactis DSM 10140 and Bl-04. J. Bacteriol. 191: 4144–4151.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Belanger A.E. & Hatfull G.F. 1999. Exponential-phase glycogen recycling is essential for growth of Mycobacterium smegmatis. J. Bacteriol. 181: 6670–6678.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blazek J. & Gilbert E.P. 2010. Effect of enzymatic hydrolysis on native starch granule structure. Biomacromolecules 11: 3275–3289.

    Article  CAS  PubMed  Google Scholar 

  • Busuioc M., Mackiewicz K., Buttaro B.A. & Piggot P.J. 2009. Role of intracellular polysaccharide in persistence of Streptococcus mutans. J. Bacteriol. 191: 7315–7322.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cameron E.A., Maynard M.A., Smith C.J., Smith T.J., Koropatkin N.M. & Martens E.C. 2012. Multidomain carbohydratebinding proteins involved in Bacteroides thetaiotaomicron starch metabolism. J. Biol. Chem. 287: 34614–34625.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cantarel B.L., Coutinho P.M., Rancurel C., Bernard T., Lombard V. & Henrissat B. 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 37: D233–D238.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cantarel B.L., Lombard V. & Henrissat B. 2012. Complex carbohydrate utilization by the healthy human microbiome. PloS One 7: e28742.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Christiansen C., Abou Hachem M., Janecek S., Viksø-Nielsen A., Blennow A. & Svensson B. 2009. The carbohydrate-binding module family 20 — diversity, structure, and function. FEBS J. 276: 5006–5029.

    Article  CAS  PubMed  Google Scholar 

  • Clemente J.C., Ursell L.K., Parfrey L.W. & Knight R. 2012. The impact of the gut microbiota on human health: an integrative view. Cell 148: 1258–1270.

    Article  CAS  PubMed  Google Scholar 

  • de Vrese M. & Schrezenmeir J. 2008. Probiotics, prebiotics, and synbiotics, pp. 1–66. In: Stahl U.D.U.E.B.N.E. (ed.) Food Biotechnology.

    Chapter  Google Scholar 

  • Duboc P. & Mollet B. 2001. Applications of exopolysaccharides in the dairy industry. Int. Dairy J. 11: 759–768.

    Article  CAS  Google Scholar 

  • Eckburg P.B., Bik E.M., Bernstein C.N., Purdom E., Dethlefsen L., Sargent M., Gill S.R., Nelson K.E. & Relman D.A. 2005. Diversity of the human intestinal microbial flora. Science 308: 1635–1638.

    Article  PubMed Central  PubMed  Google Scholar 

  • Eydallin G., Montero M., Almagro G., Sesma M.T., Viale A.M., Munoz F.J., Rahimpour M., Baroja-Fernandez E. & Pozueta-Romer J. 2010. Genome-wide screening of genes whose enhanced expression affects glycogen accumulation in Escherichia coli. DNA Res. 17: 61–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eydallin G., Viale A.M., Moran-Zorzano M.T., Munoz F.J., Montero M., Baroja-Fernandez E. & Pozueta-Romero J. 2007. Genome-wide screening of genes affecting glycogen metabolism in Escherichia coli K-12. FEBS Lett. 581: 2947–2953.

    Article  CAS  PubMed  Google Scholar 

  • Faith J.J., Guruge J.L., Charbonneau M., Subramanian S., Seedorf H., Goodman A.L., Clemente J.C., Knight R., Heath A.C., Leibel R.L., Rosenbaum M. & Gordon J.I. 2013. The long-term stability of the human gut microbiota. Science 341: 44–53.

    Article  CAS  Google Scholar 

  • Flint H.J., Duncan S.H., Scott K.P. & Louis P. 2007. Interactions and competition within the microbial community of the human colon: links between diet and health. Environ. Microbiol. 9: 1101–1111.

    Article  CAS  PubMed  Google Scholar 

  • Fredslund F., Abou Hachem M., Larsen R.J., Sørensen P.G., Coutinho P.M., Lo Leggio L. & Svensson B. 2011. Crystal structure of α-galactosidase from Lactobacillus acidophilus NCFM: insight into tetramer formation and substrate binding. J. Mol. Biol. 412: 466–480.

    Article  CAS  PubMed  Google Scholar 

  • Fuentes-Zaragoza E., Sanchez-Zapata E., Sendra E., Sayas E., Navarro C., Fernandez-Lopez J. & Perez-Alvarez J.A. 2011. Resistant starch as prebiotic: a review. Starch 63: 406–415.

    Article  CAS  Google Scholar 

  • Goffin D., Delzenne N., Blecker C., Hanon E., Deroanne C. & Paquot M. 2011. Will isomalto-oligosaccharides, a well-established functional food in Asia, break through the European and American market? The status of knowledge on these prebiotics. Crit. Rev. Food Sci. Nutr. 51: 394–409.

    Article  PubMed  Google Scholar 

  • Goh Y.J. & Klaenhammer T.R. 2013. A functional glycogen biosynthesis pathway in Lactobacillus acidophilus: expression and analysis of the glg operon. Mol. Microbiol. 89: 1187–1200.

    Article  CAS  PubMed  Google Scholar 

  • Jones S.A., Jorgensen M., Chowdhury F.Z., Rodgers R., Hartline J., Leatham M.P., Struve C., Krogfelt K.A., Cohen P.S. & Conway T. 2008. Glycogen and maltose utilization by Escherichia coli O157: H7 in the mouse intestine. Infect. Immun. 76: 2531–2540.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaneko T., Kohmoto T., Kikuchi H., Shiota M., Iino H. & Mitsuoka T. 1994. Effects of isomaltooligosaccharides with different degrees of polymerization on human fecal bifidobacteria. Biosci. Biotechnol. Biochem. 58: 2288–2290.

    Article  CAS  Google Scholar 

  • Knudsen A., van Zanten G.C., Jensen S.L., Forssten S.D., Saarinen M., Lahtinen S.J., Bandsholm O., Svensson B., Jespersen L. & Blennow A. 2013. Comparative fermentation of insoluble carbohydrates in an in vitro human feces model spiked with Lactobacillus acidophilus NCFM. Starch-Stärke 65: 346–353.

    CAS  Google Scholar 

  • Kootte R.S., Vrieze A., Holleman F., Dallinga-Thie G.M., Zoetendal E.G., de Vos W.M., Groen A.K., Hoekstra J.B.L., Stroes E.S. & Nieuwdorp M. 2012. The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus. Diabetes Obes. Metab. 14: 112–120.

    Article  CAS  PubMed  Google Scholar 

  • Ley R.E., Hamady M., Lozupone C., Turnbaugh P.J., Ramey R.R., Bircher J.S., Schlegel M.L., Tucker T.A., Schrenzel M.D., Knight R. & Gordon J.I. 2008. Evolution of mammals and their gut microbes. Science 320: 1647–1651.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leyer G.J., Li S., Mubasher M.E., Reifer C. & Ouwehand A.C. 2009. Probiotic effects on cold and influenza-like symptom incidence and duration in children. Pediatrics 124: E172–E179.

    Article  PubMed  Google Scholar 

  • Loquasto J.R., Barrangou R., Dudley E.G., Stahl B., Chen C. & Roberts R.F. 2013. Bifidobacterium animalis subsp. lactis ATCC 27673 is a genomically unique strain within its conserved subspecies. Appl. Environ. Microbiol. 79: 6903–6910.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lozupone C.A., Hamady M., Cantarel B.L., Coutinho P.M., Henrissat B., Gordon J.I. & Knight R. 2008. The convergence of carbohydrate active gene repertoires in human gut microbes. Proc. Natl. Acad. Sci. USA 105: 15076–15081.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McFall-Ngai M., Hadfield M.G., Bosch T.C.G., Carey H.V., Domazet-Loso T., Douglas A.E., Dubilier N., Eberl G., Fukami T., Gilbert S.F., Hentschel U., King N., Kjelleberg S., Knoll A.H., Kremer N., Mazmanian S.K., Metcalf J.L., Nealson K., Pierce N.E., Rawls J.F., Reid A., Ruby E.G., Rumpho M., Sanders J.G., Tautz D. & Wernegreen J.J. 2013. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. USA 110: 3229–3236.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Møller M.S., Fredslund F., Majumder A., Nakai H., Poulsen J.C.N., Lo Leggio L., Svensson B. & Abou Hachem M. 2012. Enzymology and structure of the GH13_31 glucan 1,6-α-glucosidase that confers isomaltooligosaccharide utilization in the probiotic Lactobacillus acidophilus NCFM. J. Bacteriol. 194: 4249–4259.

    Article  PubMed Central  PubMed  Google Scholar 

  • Morgan X.C., Segata N. & Huttenhower C. 2013. Biodiversity and functional genomics in the human microbiome. Trends Genet. 29: 51–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muegge B.D., Kuczynski J., Knights D., Clemente J.C., Gonzalez A., Fontana L., Henrissat B., Knight R. & Gordon J.I. 2011. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332: 970–974.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakai H., Baumann M.J., Petersen B.O., Westphal Y., Schols H., Dilokpimol A., Abou Hachem M., Lahtinen S.J., Duus J.O. & Svensson B. 2009. The maltodextrin transport system and metabolism in Lactobacillus acidophilus NCFM and production of novel α-glucosides through reverse phosphorolysis by maltose phosphorylase. FEBS J. 276: 7353–7365.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson J.K., Holmes E., Kinross J., Burcelin R., Gibson G., Jia W. & Pettersson S. 2012. Host-gut microbiota metabolic interactions. Science 336: 1262–1267.

    Article  CAS  PubMed  Google Scholar 

  • Petrova P., Petrov K. & Stoyancheva G. 2013. Starch-modifying enzymes of lactic acid bacteria — structures, properties, and applications. Starch-Stärke 65: 34–47.

    CAS  Google Scholar 

  • Rastall R.A. 2010. Functional oligosaccharides: application and manufacture. Annu. Rev. Food Scie. Technol. 1: 305–339.

    Article  CAS  Google Scholar 

  • Rodriguez-Sanoja R., Ruiz B., Guyot J.P. & Sanchez S. 2005. Starch-binding domain affects catalysis in two Lactobacillus α-amylases. Appl. Environ. Microbiol. 71: 297–302.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sanders M.E. & Klaenhammer T.R. 2001. Invited review: The scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. J. Dairy Sci. 84: 319–331.

    Article  CAS  PubMed  Google Scholar 

  • Sanz M.L., Gibson G.R. & Rastall R.A. 2005. Influence of disaccharide structure on prebiotic selectivity in vitro. J. Agric. Food Chem. 53: 5192–5199.

    Article  CAS  PubMed  Google Scholar 

  • Sarbini S.R., Kolida S., Gibson G.R. & Rastall R.A. 2013. In vitro fermentation of commercial α-gluco-oligosaccharide by faecal microbiota from lean and obese human subjects. Br. J. Nutr. 109: 1980–1989.

    Article  CAS  PubMed  Google Scholar 

  • Scott K.P., Gratz S.W., Sheridan P.O., Flint H.J. & Duncan S.H. 2013. The influence of diet on the gut microbiota. Pharmacol. Res. 69: 52–60.

    Article  CAS  PubMed  Google Scholar 

  • Sommer F. & Baeckhed F. 2012. The gut microbiota — masters of host development and physiology. Nat. Rev. Microbiol. 11: 227–238.

    Article  Google Scholar 

  • Stam M.R., Danchin E.G.J., Rancurel C., Coutinho P.M. & Henrissat B. 2006. Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng. Des. Sel. 19: 555–562.

    Article  CAS  PubMed  Google Scholar 

  • Tang M.L.K., Lahtinen S.J. & Boyle R.J. 2010. Probiotics and prebiotics: clinical effects in allergic disease. Curr. Opin. Pediatr. 22: 626–634.

    PubMed  Google Scholar 

  • Tester R.F., Karkalas J. & Qi X. 2004. Starch — composition, fine structure and architecture. J. Cereal Sci. 39: 151–165.

    Article  CAS  Google Scholar 

  • Thompson J., Jakubovics N., Abraham B., Hess S. & Pikis A. 2008. The sim operon facilitates the transport and metabolism of sucrose isomers in Lactobacillus casei ATCC 334. J. Bacteriol. 190: 3362–3373.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vigsnæs L.K., Nakai H., Hemmingsen L., Andersen J.M., Lahtinen S.J., Rasmussen L.E., Abou Hachem M., Petersen B.O., Duus J.O., Meyer A.S., Licht T.R. & Svensson B. 2013. In vitro growth of four individual human gut bacteria on oligosaccharides produced by chemoenzymatic synthesis. Food Funct. 4: 784–793.

    Article  PubMed  Google Scholar 

  • Wallace T.C., Guarner F., Madsen K., Cabana M.D., Gibson G., Hentges E. & Sanders M.E. 2011. Human gut microbiota and its relationship to health and disease. Nutr. Rev. 69: 392–403.

    Article  PubMed  Google Scholar 

  • Whelan K. 2011. Probiotics and prebiotics in the management of irritable bowel syndrome: a review of recent clinical trials and systematic reviews. Curr. Opin. Clin. Nutr. Metab. Care 14: 581–587.

    Article  PubMed  Google Scholar 

  • Yen C.H., Tseng Y.H., Kuo Y.W., Lee M.C. & Chen H.L. 2011. Long-term supplementation of isomalto-oligosaccharides improved colonic microflora profile, bowel function, and blood cholesterol levels in constipated elderly people — a placebocontrolled, diet-controlled trial. Nutrition 27: 445–450.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher Abou Hachem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Møller, M.S., Goh, Y.J., Viborg, A.H. et al. Recent insight in α-glucan metabolism in probiotic bacteria. Biologia 69, 713–721 (2014). https://doi.org/10.2478/s11756-014-0367-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-014-0367-7

Key words

Navigation