Skip to main content
Log in

Comparative pyrolysis, combustion, and kinetic modeling of twelve Cameroonian woody biomass

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Pyrolysis and combustion processes of twelve Cameroonian woody biomass were performed in a thermobalance to determine their thermal degradation profiles and the associated kinetic parameters. Classical characterizations were first performed on the twelve woody samples. For the thermogravimetric analyses, the samples were heated from ambient temperature to 900 °C at four low temperature rates (5, 10, 15, and 20 °C/min) and under nonoxidative (pure nitrogen) or oxidative (synthetic air) atmospheres. The optimal values of the kinetic parameters of the twelve samples were determined considering the temperature rate of 5 °C/min and using the extended independent parallel reaction (EIPR) model with three constituents, plus the char under an oxidative atmosphere. The first-order reaction function was considered in the pyrolysis case for the three constituents and for the degradation under air of the hemicellulose and lignin constituents, whatever the sample. The second-order or fourth-order Avrami–Erofeev reaction functions were introduced for the degradation under air of the cellulose constituent or of the char. The optimal values of the kinetic parameters determined in these conditions were compared and led to quite good simulations of the mass and mass rate curves. ANOVA computations performed on the characterizations and on the optimal values of the kinetic parameters for pyrolysis or combustion of the twelve samples indicated that the mean values of these parameters did not present differences with a significance threshold equal to 0.05.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A comb :

Pre-exponential factor for the char combustion (1/s Pa)

A i :

Pre-exponential factor for the constituent i of the sample (1/s)

c i :

Fraction of the constituent i of the sample

\( {\left(\frac{\mathrm{d}m}{\mathrm{d}t}\right)}_{\mathrm{exp}} \) :

Experimental mass rate (kg/s)

\( \frac{\mathrm{d}{m}_{\mathrm{vol},i}^{\mathrm{e}}}{\mathrm{d}t} \) :

Mass rate for volatiles emitted from constituent i (kg/s)

\( \frac{\mathrm{d}{m}_{\operatorname{char},i}^{\mathrm{c}}}{\mathrm{d}t} \) :

Mass rate for char contained in constituent i (kg/s)

Eacomb :

Activation energy for the char combustion (J/mol)

Eai :

Activation energy for the constituent i (J/mol)

EIPR:

Extended independent parallel reaction (model)

i :

Label of each constituent of the sample

I :

Number of constituents to be considered in the thermal degradation

k comb :

Kinetic constant for the char combustion (1/s Pa)

k i :

Kinetic constant for the volatiles emitted from constituent i (1/s)

m(t):

Sample mass at time t (kg)

\( {m}_{\operatorname{char},i}^{\mathrm{c}} \) :

Mass of char produced from the constituent i (kg)

m fin :

Sample final mass (kg)

m ini :

Sample initial mass (kg)

\( {m}_{\mathrm{vol},i}^{\mathrm{e}} \) :

Mass of volatiles emitted from the constituent i (kg)

\( {P}_{{\mathrm{O}}_2} \) :

Oxygen pressure (Pa)

R :

Ideal gas constant (J/mol K)

\( {R}_{\mathrm{m}}^2 \) :

Determination coefficient R2 for the mass

\( {R}_{\mathrm{r}}^2 \) :

Determination coefficient R2 for the mass rate

\( {R}_{\mathrm{o}}^2 \) :

Overall (mass and mass rate) determination coefficient R2

t :

Time parameter (s)

T :

Temperature (K)

τ vol, i :

Fraction of volatiles emitted from the constituent i

τ char, i :

Fraction of char produced from the constituent i

References

  1. Abbasi T, Abbasi SA (2010) Biomass energy and the environmental impacts associated with its production and utilization. Renew Sust Energ Rev 14:919–937. https://doi.org/10.1016/j.rser.2009.11.006

    Article  Google Scholar 

  2. Oluoti KO (2016) Investigating the reaction kinetics of tropical wood biomass - a prospect for energy recovery. PhD thesis, University of Boras, Sweden

  3. Nkolo Meze'e YN, Ngamveng JN, Bardet S (2008) Effect of enthalpy-entropy compensation during sorption of water vapour in tropical woods: the case of Bubinga (Guibourtia tessmanii J. Leonard; G. pellegriniana J.L.). Thermvochim Acta 468:1–5. https://doi.org/10.1016/j.tca.2007.11.002

    Article  Google Scholar 

  4. Simo-Tagne M, Bonoma B, Bennamoun L, Monkam L, Léonard A, Zoulalian A, Rogaume Y (2019) Modeling of coupled heat and mass transfer during drying of ebony wood using indirect natural convection solar dryer. Drying Technol 1–17. https://doi.org/10.1080/07373937.2018.1544144

  5. Simo-Tagne M, Rémond R, Rogaume Y, Zoulalian A, Perré P (2016) Characterization of sorption behavior and mass transfer properties of four central Africa tropical woods: Ayous, Sapele, Frake, Lotofa, Maderas-Cienc. Tecnol. 18(1):207–226

    Google Scholar 

  6. Momoh M, Horrocks AR, Ehoatu AN, Kolawoled EG (1996) Flammability of tropical woods-I. Investigation of the burning parameters. Polymer Degrad Stability 54:403–411

    Article  Google Scholar 

  7. Miguiri B, Wirba I, Zaida JT, Vondou A, Mouangue R (2020) Thermal characterization of local tropical woods in view of their valorization. J Mater Environ Sci 11(5):759–771

    Google Scholar 

  8. Gérard J, Kouassi AE, Daigremont C, Détienne P, Fouquet D, Vernay M (1998) Synthèse sur les caractéristiques technologiques de référence des principaux bois commerciaux africains, Série FORAFRI N°11, CIRAD & CIFOR

  9. Ackom EK, Alemagi D, Ackom NB, Minang PA, Tchoundjeu Z (2013) Modern bioenergy from agricultural and forestry residues in Cameroon: potential, challenges and the way forward. Energy Policy 63:101–113. https://doi.org/10.1016/j.enpol.2013.09.006

    Article  Google Scholar 

  10. Abanda FH (2012) Renewable energy sources in Cameroon: potentials, benefits and enabling environment. Renew Sust Energ Rev 16:4557–4562. https://doi.org/10.1016/j.rser.2012.04.011

    Article  Google Scholar 

  11. Carré J, Lacrosse L, Schenkel Y (1989) Production d’énergie à partir de la biomasse de résidus agricoles et agro-alimentaires. Animales de Gembloux 95:199–233

    Google Scholar 

  12. Tansi BN (2011) An assessment of Cameroon’s renewable energy resource and prospect for a sustainable economic development. MSc thesis. Germany: Brandenburg Technical University

  13. Mboumboue E, Njomo D (2016) Potential contribution of renewables to the improvement of living conditions of poor rural households in developing countries: Cameroon’s case study. Renew Sust Energ Rev 61:266–279. https://doi.org/10.1016/j.rser.2016.04.003

    Article  Google Scholar 

  14. Muh E, Amara S, Tabet F (2018) Sustainable energy policies in Cameroon: a holistic overview. Renew Sust Energ Rev 82:3420–3429. https://doi.org/10.1016/j.rser.2017.10.049

    Article  Google Scholar 

  15. Epule ET, Peng C, Lepage L, Chen Z (2014) Policy options towards deforestation reduction in Cameroon: an analysis based on a systematic approach. Land Use Policy 36:405–415. https://doi.org/10.1016/j.landusepol.2013.09.004

    Article  Google Scholar 

  16. Epesse Misse S, Obounou M, Ayina LM, Caillat S (2013) Utilisation des coques de noix de palmiste comme combustible dans un four de fusion de la ferraille. Revue Energies Renouvelables 16:75–89

    Google Scholar 

  17. Santos KG, Lobato FS, Lira TS, Murata VV, Barrozo MAS (2012) Sensitivity analysis applied to independent parallel reaction model for pyrolysis of bagasse. Chem Eng Research Design 90:1989–1996. https://doi.org/10.1016/j.cherd.2012.04.007

    Article  Google Scholar 

  18. Damartzis T, Vamvuka D, Sfakiotakis S, Zabaniotou A (2011) Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresour Technol 102(10):6230–6238. https://doi.org/10.1016/j.biortech.2011.02.060

    Article  Google Scholar 

  19. Barneto AG, Carmona JA, Alfonso JEM, Serrano RS (2010) Simulation of the thermogravimetry analysis of three non-wood pulps. Bioresour Technol 101:3220–3229. https://doi.org/10.1016/j.biortech.2009.12.034

    Article  Google Scholar 

  20. Dhyani V, Bhaskar T (2017) A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew Energy 129:695–716. https://doi.org/10.1016/j.renene.2017.04.035

    Article  Google Scholar 

  21. Abdelouahed L, Leveneur S, Vernieres-Hassimi L, Balland L, Taouk B (2017) Comparative investigation for the determination of kinetic parameters for biomass pyrolysis by thermogravimetric analysis. J. Therm. Anal. Calor. 129:1201–1213. https://doi.org/10.1007/s10973-017-6212-9

    Article  Google Scholar 

  22. Jauhiainen J, Conesa JA, Font R, Martin Gullon I (2004) Kinetics of the pyrolysis and combustion of olive oil solid waste. J Anal Appl Pyrol 72:9–15. https://doi.org/10.1016/j.jaap.2004.01.003.74

    Article  Google Scholar 

  23. Epesse Misse S, Brillard A, Brilhac JF, Obonou M, Ayina LM, Schönnenbeck C, Caillat S (2018) Thermogravimetric analyses and kinetic modeling of three Cameroonian biomass. J Therm Anal Calor 132:1979–1994. https://doi.org/10.1007/s10973-018-7108-z

    Article  Google Scholar 

  24. Mvogo JK (2008) Regroupement mécanique par méthode vibratoire des bois du bassin du Congo. PhD thesis, University of Yaoundé 1

  25. Benoit Y (2008) Le guide des essences de bois, Eyrolles. ISBN 9782212120868

  26. Van Krevelen DW, te Nijenhuis K (2009) Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Elsevier

  27. Sfakiotakis S, Vamvuka D (2015) Development of a modified independent parallel reactions kinetic model and comparison with the distributed activation energy model for the pyrolysis of a wide variety of biomass fuels. Bioresour Technol 197:434–442, https://doi.org/10.1016/j.biortech.2015.08.130 0960-8524

  28. Valente M, Brillard A, Schönnenbeck C, Brilhac JF (2015) Investigation of grape marc combustion using thermogravimetric analysis. Kinetic modeling using an extended independent parallel reaction (EIPR). Fuel Proc Technol. 131:297–303. https://doi.org/10.1016/j.fuproc.2014.10.034

    Article  Google Scholar 

  29. Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

    Article  Google Scholar 

  30. Brillard A, Brilhac JF (2020) Improvements of global models for the determination of the kinetic parameters associated to the thermal degradation of lignocellulosic materials under low heating rates. Renew Energy 146:1498–1509. https://doi.org/10.1016/j.renene.2019.07.040

    Article  Google Scholar 

  31. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochemica Acta 520:1–19. https://doi.org/10.1016/j.tca.2011.03.034

    Article  Google Scholar 

  32. Hameed S, Sharma A, Pareek V, Wu H, Yu Y (2019) A review on biomass pyrolysis models: kinetic, network and mechanistic models. Biomass Bioenergy 123:104–122. https://doi.org/10.1016/j.biombioe.2019.02.008

    Article  Google Scholar 

  33. Brillard A, Habermacher D, Brilhac JF (2017) Thermal degradations of used cotton fabrics and of cellulose: kinetic and heat transfer modeling. Cellulose 24:1579–1595. https://doi.org/10.1007/s10570-017-1200-6

    Article  Google Scholar 

  34. Kaljuvee T, Keelman M, Trikkel A, Petkova V (2013) TG-FTIR/MS analysis of thermal and kinetic characteristics of some coal samples. J. Therm. Anal. Calor. 113:1063–1071. https://doi.org/10.1007/s10973-013-2957-y

    Article  Google Scholar 

  35. Leightner JE (1999) Weather-induced changes in the trade-off between SO2 and NOx at large power plants. Energ. Econ. 21(3):239–259, S0140-9883(98) 00018-8

  36. Kumar R, Strezov V, Weldekidan H, He J, Singh S, Kan T, Dastjerdi B (2020) Lignocellulose biomass pyrolysis for bio-oil production: a review of biomass pre-treatment methods for production of drop-in fuels. Renew Sustain Energy Rev 123:109763, https://doi.org/10.1016/j.rser.2020.109763

  37. Fahmi R, Bridgwater AV, Darvell LI, Jones JM, Yates N, Thain S, Donnison IS (2007) The effect of alkali metals on combustion and pyrolysis of Lolium and Festuca grasses, switchgrass and willow. Fuel 86:1560–1569. https://doi.org/10.1016/j.fuel.2006.11.030

    Article  Google Scholar 

  38. Safar M, Lin BJ, Chen WH, Langauer D, Chang JS, Raclavska H, Petrissans A, Rousset P, Petrissans M (2019) Catalytic effects of potassium on biomass pyrolysis, combustion and torrefaction. Appl Energy 235:346–355. https://doi.org/10.1016/j.apenergy.2018.10.065

    Article  Google Scholar 

  39. Raveendran K, Ganesh A, Khilart KC (1996) Pyrolysis characteristics of biomass and biomass components. Fuel 75(8):987–998

    Article  Google Scholar 

  40. Williams P, Besler S (1996) The influence of temperature and heating rate on the slow pyrolysis of biomass. Renew Energy 7(3):233–255. 50960-1481(96)00006-7

  41. Cozzani V, Lucchesi A, Stoppato G, Maschio G (1997) A new method to determine the composition of biomass by thermogravimetric analysis. Canad J Chem Eng 75:127–133. https://doi.org/10.1002/cjce.5450750120

    Article  Google Scholar 

  42. Barneto AG, Carmona JA, Alfonso JEM, Alcaide LJ (2009) Use of autocatalytic kinetics to obtain composition of lignocellulosic materials. Bioresour Technol 100:3963–3973. https://doi.org/10.1016/j.biortech.2009.03.04

    Article  Google Scholar 

  43. Manya J, Velo E, Puigjaner L (2003) Kinetics of biomass pyrolysis: a reformulated three-parallel-reactions model. Ind Eng Chem Res 42:434–441. https://doi.org/10.1021/ie020218p

    Article  Google Scholar 

  44. Conesa JA, Domene A (2011) Biomasses pyrolysis and combustion kinetics through n-th order parallel reactions. Therm Acta 523:176–181. https://doi.org/10.1016/j.tca.2011.05.021

    Article  Google Scholar 

  45. Samuelsson LN, Babler MU, Moriana R (2015) A single model-free rate expression describing both non-isothermal and isothermal pyrolysis of Norway spruce. Fuel 161:59–67. https://doi.org/10.1016/j.fuel.2015.08.019

    Article  Google Scholar 

  46. Niu H, Liu N (2015) Thermal decomposition of pine branch: unified kinetic model on pyrolytic reactions in pyrolysis and combustion. Fuel 160:339–345. https://doi.org/10.1016/j.fuel.2015.07.108

    Article  Google Scholar 

  47. Haji-Sulaiman MZ, Aroua MK (1997) Activation energy for the oxidation of Malaysian coal chars. J Inst Energy 70(483):52–56

    Google Scholar 

  48. Caram HS, Amundson NR (1977) Diffusion and reaction in a stagnant boundary layer about a carbon particle. Ind Eng Chem Fundam 16:71–81. https://doi.org/10.1021/i160062a001

    Article  Google Scholar 

  49. Zolin A, Jensen AD, Jensen PA, Dam-Johansen K (2002) Experimental study of char thermal deactivation, Fuel 81:1065–1075. S0016-2361(02)000009-1

Download references

Acknowledgments

The authors thank the Centre for Collective Use in NArFU in Arkhangelsk, where the characterizations were performed for the twelve samples.

Author information

Authors and Affiliations

Authors

Contributions

Formal analysis and investigation, resources: Samuel Epesse Misse; conceptualization and writing original draft: Alain Brillard; formal analysis and investigation: Pavel Mayandyshev; supervision: Jean-François Brilhac; supervision: Marcel Obonou.

Corresponding author

Correspondence to Alain Brillard.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Epesse Misse, S., Brillard, A., Mayandyshev, P. et al. Comparative pyrolysis, combustion, and kinetic modeling of twelve Cameroonian woody biomass. Biomass Conv. Bioref. 12, 3161–3181 (2022). https://doi.org/10.1007/s13399-020-00808-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00808-9

Keywords

Navigation