Skip to main content
Log in

Role of GDF15 in radiosensitivity of breast cancer cells

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

The Growth Differentiation Factor-15 gene (GDF15) is a member of TGF-b superfamily and this cytokine family is considered to be a promising target for cancer therapy. The purpose of this study was to investigate the effect of tumor derived GDF15 on proliferation and radiosensitivity of breast cancer cells in vitro and in vivo. A mouse breast cancer LM2 cell line with stable transfection of full-length mouse GDF15 cDNA was established. Cell growth and proliferation was observed using WST assay and impedance-based method. Radiation induced GDF15 and TGF-b1 expression was determined by qRT-PCR. Radiosensitivity was measured by a colony formation assay in vitro and by a tumor growth delay assay in vivo. Cells with more than a 10-fold increase in GDF15 expression had a higher growth rate than parental control cells in vitro and in vivo. The radiation induced elevation of the expression of TGFb1 was reduced in GDF15 overexpressing cells. GDF15 may play a role in the radiation response of breast cancer cells by effecting cell survival, inhibiting radiation-induced cell death, and inhibiting the TGF-b1 related cytotoxic action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Staff A.C., Bock A.J., Becker C., Kempf T., Wollert K.C., Davidson B., Growth differentiation factor-15 as a prognostic biomarker in ovarian cancer, Gynecol. Oncol., 2010, 118, 237–243

    Article  CAS  PubMed  Google Scholar 

  2. Wallin U., Glimelius B., Jirström K., Darmanis S., Nong R.Y., Pontén F., et al., Growth differentiation factor 15: a prognostic marker for recurrence in colorectal cancer, Br. J. Cancer., 2011, 104, 1619–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Suesskind D., Schatz A., Schnichels S., Coupland S.E., Lake S.L., Wissinger B., et al., GDF-15: a novel serum marker for metastases in uveal melanoma patients, Graefes Arch. Clin. Exp. Ophthalmol., 2012, 250, 887–895

    Article  CAS  PubMed  Google Scholar 

  4. Albertoni M., Shaw P.H., Nozaki M., Godard S., Tenan M., Hamou M.F., et al., Anoxia induces macrophage inhibitory cytokine-1 (MIC-1) in glioblastoma cells independently of p53 and HIF-1, Oncogene, 2002, 21, 4212–4219

    Article  CAS  PubMed  Google Scholar 

  5. Wilson L.C., Baek S.J., Call A., Eling T.E., Nonsteroidal anti-inflammatory drug-activated gene (NAG-1) is induced by genistein through the expression of p53 in colorectal cancer cells, Int. J. Cancer., 2003, 105, 747–753

    Article  CAS  PubMed  Google Scholar 

  6. Jurisic V., Srdic-Rajic T., Konjevic G., Bogdanovic G., Colic M., TNF-α induced apoptosis is accompanied with rapid CD30 and slower CD45 shedding from K-562 cells, J. Membr. Biol., 2011, 239, 115–122

    Article  CAS  PubMed  Google Scholar 

  7. Chen S.J., Karan D., Johansson S.L., Lin F.F., Zeckser J., Singh A.P., et al., Prostate-derived factor as a paracrine and autocrine factor for the proliferation of androgen receptor-positive human prostate cancer cells, Prostate, 2007, 67, 557–571

    Article  CAS  PubMed  Google Scholar 

  8. Baek K.E., Yoon S.R., Kim J.T., Kim K.S., Kang S.H., Yang Y., et al., Upregulation and secretion of macrophage inhibitory cytokine-1 (MIC-1) in gastric cancers, Clin. Chim. Acta, 2009, 401, 128–133

    Article  CAS  PubMed  Google Scholar 

  9. Brown D.A., Ward R.L., Buckhaults P., Liu T., Romans K.E., Hawkins N.J., et al., MIC-1 serum level and genotype: associations with progress and prognosis of colorectal carcinoma, Clin. Cancer Res., 2003, 9, 2642–2650

    CAS  PubMed  Google Scholar 

  10. Selander K.S., Brown D.A., Sequeiros G.B., Hunter M., Desmond R., Parpala T., et al., Serum macrophage inhibitory cytokine-1 concentrations correlate with the presence of prostate cancer bone metastases, Cancer Epidemiol. Biomarkers Prev., 2007, 16, 532–537

    Article  CAS  PubMed  Google Scholar 

  11. Huh S.J., Chung C.Y., Sharma A., Robertson G.P., Macrophage Inhibitory Cytokine-1 Regulates Melanoma Vascular Development, Am. J. Pathol., 2010, 176, 2948–2957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hegyesi H., Sándor N., Schilling-Tóth B., Kis E., Lumniczky K., Sáfrány G., Differentially expressed genes associated with low-dose gamma radiation: Growth Differentiation Factor (GDF-15) as a radiation response gene and radiosensitizing target, In: Gómez-Tejodor G.G., Fuss M.C. (Eds.), Radiation Damage in Biomolecular Systems — Biological and Medical Physics, Biomedical Engineering, Springer, 2012

    Google Scholar 

  13. Kruse J.J., Floot B.G., te Poele J.A., Russell N.S., Stewart F.A., Radiation-induced activation of TGFbeta signaling pathways in relation to vascular damage in mouse kidneys, Radiat. Res., 2009, 171, 188–197

    Article  CAS  PubMed  Google Scholar 

  14. Rodemann H.P., Binder A., Burger A., Güven N., Löffler H., Bamberg M., The underlying cellular mechanism of fibrosis, Kidney Int. Suppl. 1996, 54, S32–36

    CAS  PubMed  Google Scholar 

  15. Barcellos-Hoff M.H., How do tissues respond to damage at the cellular level? The role of cytokines in irradiated tissues, Radiat. Res., 1998, 150, S109–120

    Article  CAS  PubMed  Google Scholar 

  16. Boerma M., Roberto K.A., Hauer-Jensen M., Prevention and treatment of functional and structural radiation injury in the rat heart by pentoxifylline and alpha-tocopherol, Int. J. Radiat. Oncol. Biol. Phy., 2008, 72, 170–177

    Article  CAS  Google Scholar 

  17. Krüse J.J., Bart C.I., Visser A., Wondergem J., Changes in transforming growth factor-beta (TGFbeta 1), procollagen types I and II mRNA in the rat heart after irradiation, Int. J. Radiat. Biol., 1999, 75, 1429–1436

    Article  PubMed  Google Scholar 

  18. Munshi A., Hobbs M., Meyn R.E., Clonogenic Cell Survival Assay, In: Blumenthal R.D. (Ed.), Chemosensitivity — Volume I: In Vitro Assays, Springer, 2005

    Google Scholar 

  19. Hegyesi H., Lambert J.R., Sándor N., Scilling-Tóth B., Sáfrány G., Validation of Growth Differentiation Factor (GDF-15) as a Radiation Response Gene and Radiosensitizing Target in Mammary Adenocarcinoma Model, In: Done S.J. (Ed.), Breast Cancer — Recent Advances in Biology, Imaging and Therapeutics, InTech. 2011

    Google Scholar 

  20. Ozsvári B., Puskás L.G., Nagy L.I., Kanizsai I., Gyuris M., Madácsi R., et al., A cell-microelectronic sensing technique for the screening of cytoprotective compounds, Int. J. Mol. Med., 2010, 25, 525–530

    PubMed  Google Scholar 

  21. Kürti L., Veszelka S., Bocsik A, Dung N.T., Ozsvári B., Puskás L.G., Kittel A, Szabó-Révész P., Deli M.A., The effect of sucrose esters on a culture model of the nasal barrier, Toxicol. In Vitro, 2012, 26, 445–454

    Article  PubMed  Google Scholar 

  22. Kürti L., Veszelka S., Bocsik A., Ozsvári B., Puskás L.G., Kittel A., Szabó-Révész P., Deli M.A., Retinoic acid and hydrocortisone strengthen the barrier function of human RPMI 2650 cells, a model for nasal epithelial permeability, Cytotechnology, 2013, 65, 395–406

    Google Scholar 

  23. Kiss L., Walter F.R., Bocsik A., Veszelka S., Ozsvári B., Puskás LG., Szabó-Révész P., Deli M.A., Kinetic analysis of the toxicity of pharmaceutical excipients Cremophor EL and RH40 on endothelial and epithelial cells, J. Pharm. Sci., 2013, 102, 1173–1181

    Article  CAS  PubMed  Google Scholar 

  24. Veszelka S., Tóth A.E., Walter F.R., Datki Z., Mózes E., Fülöp L., et al., Docosahexaenoic acid reduces amyloid-β induced toxicity in cells of the neurovascular unit, J. Alzheimers Dis., 2013, 36, 487–501

    CAS  PubMed  Google Scholar 

  25. Liu T., Bauskin A.R., Zaunders J., Brown D.A., Pankhurst S., Russell P.J., et al., Macrophage inhibitory cytokine 1 reduces cell adhesion and induces apoptosis in prostate cancer cells, Cancer Res., 2003, 63, 5034–5040

    CAS  PubMed  Google Scholar 

  26. Roth P., Junker M., Tritschler I., Mittelbronn M., Dombrowski Y., Breit S.N., GDF-15 contributes to proliferation and immune escape of malignant gliomas, Clin. Cancer Res., 2010, 16, 3851–3859

    Article  CAS  PubMed  Google Scholar 

  27. Baek S.J., Kim K.S., Nixon J.B., Wilson L.C., Eling T.E., Cyclooxygenase inhibitors regulate the expression of a TGF-beta superfamily member that has proapoptotic and antitumorigenic activities, Mol. Pharmacol., 2001, 59, 901–908

    CAS  PubMed  Google Scholar 

  28. Graichen R., Liu D., Sun Y., Lee K.O., Lobie P.E., Autocrine human growth hormone inhibits placental transforming growth factor-beta gene transcription to prevent apoptosis and allow cell cycle progression of human mammary carcinoma cells, J. Biol. Chem., 2002, 277, 26662–26672

    Article  CAS  PubMed  Google Scholar 

  29. Boyle G.M., Pedley J., Martyn A.C., Banducci K.J., Strutton G.M., Brown D.A., et al., Macrophage inhibitory cytokine-1 is overexpressed in malignant melanoma and is associated with tumorigenicity, J. Invest. Dermatol., 2009, 129, 383–391

    Article  CAS  PubMed  Google Scholar 

  30. Xu J., Kimball T.R., Lorenz J.N., Brown D.A., Bauskin A.R., Klevitsky R., et al., GDF15/MIC-1 functions as a protective and antihypertrophic factor released from the myocardium in association with SMAD protein activation, Circ. Res., 2006, 98, 342–350

    Article  CAS  PubMed  Google Scholar 

  31. de Jager S.C., Bermúdez B., Bot I., Koenen R.R., Bot M., Kavelaars A., et al., Growth differentiation factor 15 deficiency protects against atherosclerosis by attenuating CCR2-mediated macrophage chemotaxis, J. Exp. Med., 2011, 208, 217–225

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kim K.K., Lee J.J., Yang Y., You K.H., Lee J.H., Macrophage inhibitory cytokine-1 activates AKT and ERK-1/2 via the transactivation of ErbB2 in human breast and gastric cancer cells, Carcinogenesis, 2008, 29, 704–712

    Article  CAS  PubMed  Google Scholar 

  33. Ferrari N., Pfeffer U., Dell’Eva R., Ambrosini C., Noonan D.M., Albini A., The transforming growth factor-beta family members bone morphogenetic protein-2 and macrophage inhibitory cytokine-1 as mediators of the antiangiogenic activity of N-(4-hydroxyphenyl)retinamide, Clin. Cancer. Res., 2005, 11, 4610–4619

    Article  CAS  PubMed  Google Scholar 

  34. Martin M., Vozenin M.C., Gault N., Crechet F., Pfarr C.M., Lefaix J.L., Coactivation of AP-1 activity and TGF-beta1 gene expression in the stress response of normal skin cells to ionizing radiation, Oncogene, 1997, 15, 981–989

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hargita Hegyesi.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schilling-Tóth, B., Sándor, N., Walter, F.R. et al. Role of GDF15 in radiosensitivity of breast cancer cells. cent.eur.j.biol. 9, 982–992 (2014). https://doi.org/10.2478/s11535-014-0328-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-014-0328-8

Keywords

Navigation