Skip to main content
Log in

Delay-induced state transition and resonance in periodically driven tumor model with immune surveillance

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

The phenomenon of stochastic resonance (SR) in a tumor growth model under the presence of immune surveillance is investigated. Time delay and cross-correlation between multiplicative and additive noises are considered in the system. The signal-to-noise ratio (SNR) is calculated when periodic signal is introduced multiplicatively. Our results show that: (i) the time delay can accelerate the transition from the state of stable tumor to that of extinction, however the correlation between two noises can accelerate the transition from the state of extinction to that of stable tumor; (ii) the time delay and correlation between two noises can lead to a transition between SR and double SR in the curve of SNR as a function of additive noise intensity, however for the curve of SNR as a function of multiplicative noise intensity, the time delay can cause the SR phenomenon to disappear, and the cross-correlation between two noises can lead to a transition from SR to stochastic reverse-resonance. Finally, we compare the SR phenomenon for the multiplicative periodic signal with that for additive periodic signal in the tumor growth model with immune surveillance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Benzi, A. Sutera, A. Vulpiani J. Phys. A: Math. Gen. 14, L453 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  2. R. Benzi, G. Parisi, A. Sutera, A. Vulpiani, Tellus 34, 10 (1982)

    Article  ADS  Google Scholar 

  3. C. Nicolis, G. Nicolis, Tellus 33, 225 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  4. C. Nicolis, Tellus 34, 1 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  5. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni Rev. Mod. Phys. 70, 223 (1998)

    Article  ADS  Google Scholar 

  6. R. N. Mantegna, B. Spagnolo, Nuovo Cimento D 17, 873 (1995)

    Article  ADS  Google Scholar 

  7. E. Lanzara, R.N. Mantegna, B. Spagnolo, R. Zangara, Am. J. Phys. 65, 341 (1997)

    Article  ADS  Google Scholar 

  8. W. R. Zhong, Y. Z. Shao, Z. H. He, Phys. Rev. E 73, 060902 (2006)

    Article  ADS  Google Scholar 

  9. C. H. Zeng, C. W. Xie, Mod. Phys. Lett. B 13, 1651 (2009)

    Article  ADS  Google Scholar 

  10. A. Joshi, M. Xiao, Phys. Rev. A 74, 013817 (2006)

    Article  ADS  Google Scholar 

  11. Y. Jia, S. N. Yu, J. R. Li, Phys. Rev. E 62, 1869 (2000)

    Article  ADS  Google Scholar 

  12. Y. Jia, X. P. Zheng, X. M. Hu, J. H. Li, Phys. Rev. E 63, 031107 (2001)

    Article  ADS  Google Scholar 

  13. X. Q. Luo, S. Q. Zhu, Phys. Rev. E 67, 021104 (2003)

    Article  ADS  Google Scholar 

  14. D. J. Wu, S. Q. Zhu, Phys. Lett. A 363, 202 (2007)

    Article  ADS  Google Scholar 

  15. A. Fiasconaro, B. Spagnolo, A. Ochab-Marcinek, E. Gudowska-Nowak Phys. Rev. E 74, 041904 (2006)

    Article  ADS  Google Scholar 

  16. W. R. Zhong, Y. Z. Shao, Z. H. He, Phys. Rev. E 74, 011916 (2006)

    Article  ADS  Google Scholar 

  17. W. R. Zhong, Y. Z. Shao, L. Li, F. H Wang, Z. H. He, Europhys. Lett. 82, 20003 (2008)

    Article  ADS  Google Scholar 

  18. T. Bose, S. Trimper, Phys. Rev. E 79, 051903 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  19. B. Spagnolo, A. La Barbera, Physica A 315, 114 (2002)

    Article  ADS  MATH  Google Scholar 

  20. D. Valenti, A. Fiasconaro, B. Spagnolo, Physica A, 331, 477 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  21. C. H. Zeng, H. Wang, J. Stat. Phys. 141, 889 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. J. Yu, G. Hu, B. K. Ma, Phys. Rev. B 39, 4572 (1989)

    Article  ADS  Google Scholar 

  23. M. Molski, J. Konarski, Phys. Rev. E 68, 021916 (2003)

    Article  ADS  Google Scholar 

  24. B. Q. Ai, X. J. Wang, G. T. Liu, L. G. Liu, Phys. Rev. E 67, 022903 (2003)

    Article  ADS  Google Scholar 

  25. A. Behera, S. F. O Rourke, Phys. Rev. E 77, 013901 (2008)

    Article  ADS  Google Scholar 

  26. B. Q. Ai, X. J. Wang, L. G. Liu, Phys. Rev. E 77, 013902 (2008)

    Article  ADS  Google Scholar 

  27. D. C. Mei, C. W. Xie, L. Zhang, Eur. Phys. J. B 41, 107 (2004)

    Article  ADS  Google Scholar 

  28. C. J. Wang, Q. Wei, D. C. Mei, Mod. Phys. Lett. B 21, 789 (2007)

    Article  ADS  MATH  Google Scholar 

  29. C. J. Wang, Q. Wei, D. C. Mei, Phys. Lett. A 372, 2176 (2008)

    Article  ADS  MATH  Google Scholar 

  30. G. P. Dunn, L. J. Old, R. D. Schreiber, Annu. Rev. Immunol. 22, 329 (2004)

    Article  Google Scholar 

  31. R. Kim, M. Emi, K. Tanabe, Immunol. 121, 1 (2007)

    Article  Google Scholar 

  32. A. Fiasconaro, A. Ochab-Marcinek, B. Spagnolo, E. Gudowska-Nowak, Eur. Phys. J. B 65, 435 (2008)

    Article  ADS  Google Scholar 

  33. C. H. Zeng, X. F. Zhou, S. F. Tao, J. Phys. A: Math. Theor. 42, 495002 (2009)

    Article  MathSciNet  Google Scholar 

  34. C. H. Zeng, Phys. Scr. 81, 025009 (2010)

    Article  ADS  Google Scholar 

  35. L. S. Tsimring, A. Pikovsky, Phys. Rev. Lett. 87, 250602 (2001)

    Article  ADS  Google Scholar 

  36. C. Masoller, Phys. Rev. Lett. 90, 020601 (2003)

    Article  ADS  Google Scholar 

  37. J. C. Cai, D. C. Mei, Mod. Phys. Lett. B 22, 2759 (2008)

    Article  ADS  MATH  Google Scholar 

  38. D. Huber, L. S. Tsimring, Phys. Rev. Lett. 91, 260601 (2003)

    Article  ADS  Google Scholar 

  39. D. Curtin et al., Phys. Rev. E 70, 031103 (2004)

    Article  ADS  Google Scholar 

  40. J. Houlihan, D. Goulding, Th. Busch, C. Masoller, G. Huyet, Phys. Rev. Lett. 92, 050601 (2004)

    Article  ADS  Google Scholar 

  41. M. C. Mackey, L. Glass, Science 197, 287 (1977)

    Article  ADS  Google Scholar 

  42. P. C. Bressoff, S. Coombes, Phys. Rev. Lett. 78, 4665 (1997)

    Article  ADS  Google Scholar 

  43. J. Garc a-Ojalvo, R. Roy, Phys. Lett. A 224, 51 (1996)

    Article  ADS  Google Scholar 

  44. C. Masoller, Phys. Rev. Lett. 86, 2782 (2001)

    Article  ADS  Google Scholar 

  45. L. S. Tsimring, A. Pikovsky, Phys. Rev. Lett. 87, 250602 (2001)

    Article  ADS  Google Scholar 

  46. X. J. Tian, X. P. Zhang, F. Liu, W. Wang, Phys. Rev. E 80, 011926 (2009)

    Article  ADS  Google Scholar 

  47. L. C. Du, D. C. Mei, Phys. Lett. A 374, 3275 (2010)

    Article  ADS  MATH  Google Scholar 

  48. C. H. Zeng, H. Wang, Chem. Phys. 402, 1 (2012)

    Article  ADS  Google Scholar 

  49. W. Guo, L. C. Du, D. C. Mei, Phys. A 391, 1270 (2012)

    Article  Google Scholar 

  50. R. Lefever, R. Garay, In: A. J. Valleron, P. D. M. Macdonald (Eds.), Local Description of Immune Tumor Rejection, Biomathematics and Cell Kinetics (Elsevier, North-Holland, Amsterdam, 1978) p. 333

  51. J. J. Kim, I. F. Tannock, Nat. Rev. Cancer 5, 516 (2005)

    Article  Google Scholar 

  52. X. Gu, S. Zhu, D. Wu, Eur. Phys. J. D 42, 461 (2007)

    Article  ADS  Google Scholar 

  53. D. J. Wu, L. Cao, S. Z. Ke, Phys. Rev. E 50, 2496 (1994)

    Article  ADS  Google Scholar 

  54. S. Guillouzic, I. L’Heureux, A. Longtin, Phys. Rev. E 59, 3970 (1999)

    Article  ADS  Google Scholar 

  55. S. Guillouzic, I. L’Heureux, A. Longtin, Phys. Rev. E 61, 4906 (2000)

    Article  ADS  Google Scholar 

  56. T. D. Frank, Phys. Rev. E 72, 011112 (2005)

    Article  ADS  Google Scholar 

  57. H. S. Wio, R. R. Deza, Eur. Phys. J. Spec. Top. 146, 111 (2007)

    Article  Google Scholar 

  58. H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications (Springer, Berlin, 1992)

    Google Scholar 

  59. W. Horsthemke, R. Lefever, Noise-Induced Transitions (Springer, Berlin, 1984)

    MATH  Google Scholar 

  60. C. Van den Broeck, J. M. R. Parrondo, R. Toral, Phys. Rev. Lett. 73, 3395 (1994)

    Article  ADS  Google Scholar 

  61. J. Garcia-Ojalvo, J. M. Sancho, Noise in Spatially Extended Systems (Springer, Berlin, 1999)

    Book  MATH  Google Scholar 

  62. P. Hänggi, F. Marchesoni, P. Z. Grigolini, Phys. B 56, 333 (1984)

    Google Scholar 

  63. R. F. Fox, Phys. Rev. A 33, 467 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  64. S. Bouzat, H. S. Wio, Phys. Rev. E 59, 5142 (1999)

    Article  ADS  Google Scholar 

  65. H. S. Wio, S. Bouzat, Braz. J. Phys. 29, 136 (1999)

    Article  ADS  Google Scholar 

  66. P. S. Burada, G. Schmid, D. Reguera, J. M. Rubi, P. Hänggi, Europhys. Lett. 87, 50003 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhua Zeng.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Han, Q., Zeng, C. et al. Delay-induced state transition and resonance in periodically driven tumor model with immune surveillance. centr.eur.j.phys. 12, 383–391 (2014). https://doi.org/10.2478/s11534-014-0460-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-014-0460-0

Keywords

Navigation