Skip to main content
Log in

Transition and resonance induced by colored noises in tumor model under immune surveillance

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we study stationary probability distribution and stochastic resonance phenomenon in a tumor model under immune surveillance, which is driven by colored Gaussian noises. The signal-to-noise ratio is calculated when periodic signal is introduced. The impacts of self-correlation times \(\tau _{1}\) and \(\tau _{2}\), cross-correlation strength \(\lambda \) between two noises and time \(\tau _{3}\) on stationary probability distribution and signal-to-noise ratio are discussed, respectively. Research results show that structure of stationary probability distribution transfers from extinction state to tumor stable one as \(\lambda \), \(\tau _{1}\), \(\tau _{2}\) and \(\tau _{3}\) increase; signal-to-noise ratio as a function of additive noise intensity exhibits maximum and minimum, maximum and minimum are the identifying characteristics of stochastic resonance and stochastic reverse-resonance phenomenon. However for the curve of signal-to-noise ratio as a function of multiplicative noise intensity, there exhibits only a maximum and increases of \(\lambda \), \(\tau _{1}\) and \(\tau _{3}\) weakens the stochastic resonance and stochastic reverse-resonance; conversely, increase of \(\tau _{2}\) enhances stochastic resonance and stochastic reverse-resonance in tumor model under immune surveillance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R Benzi, A Sutera and A Vulpiani J. Phys. A: Math. Gen. 14 L453 (1981)

  2. C Nicolis Tellus 34 1 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  3. L Gammaitoni, P Hänggi, P Jung and F Marchesoni Rev. Mod. Phys. 70 223 (1998)

    Article  ADS  Google Scholar 

  4. Y Jia, X P Zheng, X M Hu and J H Li Phys. Rev. E 63 031107 (2001)

    Article  ADS  Google Scholar 

  5. A A Zaikin, J Kurths and L Schimansky-Geier Phys. Rev. Lett. 85 227 (2000)

    Article  ADS  Google Scholar 

  6. M Rusconi, A Zaikin, N Marwan and J Kurths Phys. Rev. Lett. 100 128101 (2008)

    Article  ADS  Google Scholar 

  7. E I Volkov, E Ullner, A A Zaikin and J Kurths Phys. Rev. E 68 026214 (2003)

    Article  ADS  Google Scholar 

  8. C Zhou, J Kurths and B Hu Phys. Rev. Lett. 87 098101 (2001)

    Article  ADS  Google Scholar 

  9. T Bose and S Trimper Phys. Rev. E 79 051903 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  10. B Q Ai, X J Wang and L G Liu Phys. Rev. E 77 013902 (2008)

    Article  ADS  Google Scholar 

  11. L J Yang and C J Wang Indian J. Phys. 88 103 (2014)

    Article  Google Scholar 

  12. R A Lake and B W S Robinson Nat. Rev. Cancer 5 397 (2005)

    Article  Google Scholar 

  13. J J Kim and I F Tannock Nat. Rev. Cancer 5 516 (2005)

    Article  Google Scholar 

  14. M Molski and J Konarski Phys. Rev. E 68 021916 (2003)

    Article  ADS  Google Scholar 

  15. A Fiasconaro, B Spagnolo, A Ochab-Marcinek and E Gudowska-Nowak Phys. Rev. E 74 041904 (2006)

    Article  ADS  Google Scholar 

  16. D C Mei, C W Xie and L Zhang Eur. Phys. J. B 41 107 (2004)

    Article  ADS  Google Scholar 

  17. C J Wang, Q Wei and D C Mei Mod. Phys. Lett. B 21 789 (2007)

    Article  MATH  ADS  Google Scholar 

  18. C J Wang, Q Wei and D C Mei Phys. Lett. A 372 2176 (2008)

    Article  MATH  ADS  Google Scholar 

  19. G P Dunn, L J Old and R D Schreiber Annu. Rev. Immunol. 22 329 (2004)

    Article  Google Scholar 

  20. R Kim, M Emi and K Tanabe Immunol. 121 1 (2007)

    Article  Google Scholar 

  21. A Fiasconaro, A Ochab-Marcinek, B Spagnolo and E Gudowska-Nowak Eur. Phys. J. B 65 435 (2008)

    Article  ADS  Google Scholar 

  22. W R Zhong, Y Z Shao and Z H He Phys. Rev. E 73 060902(R) (2006)

    Article  ADS  Google Scholar 

  23. W R Zhong, Y Z Shao and Z H He Phys. Rev. E 74 011916 (2006)

    Article  ADS  Google Scholar 

  24. A Ochab-Marcinek and E Gudowska-Nowak Phys. A 343 557 (2004)

    Article  ADS  Google Scholar 

  25. C H Zeng, X F Zhou and S F Tao J. Phys. A: Math. Theor. 42 495002 (2009)

    Article  MathSciNet  Google Scholar 

  26. C H Zeng Phys. Scr. 81 025009 (2010)

    Article  ADS  Google Scholar 

  27. T Bose and S Trimper Phys. Rev. E 84 021927 (2011)

    Article  ADS  Google Scholar 

  28. A J R Madureira, P Hänggi and H S Wio Phys. Lett. A 217 248 (1996)

    Article  ADS  Google Scholar 

  29. Y Jia and J R Li Phys. A 252 417 (1998)

    Article  ADS  Google Scholar 

  30. R Lefever and R Garay Local description of immune tumor rejection (eds.) A J Valleron and P D M Macdonald Biomathematics and Cell Kinetics (Amsterdam: Elsevier) p 333 (1978)

  31. M Thattai and A van Oudenaarden Proc. Natl. Acad. Sci. USA 98 8614 (2001)

    Article  ADS  Google Scholar 

  32. E A Novikov Zh. Eksp. Teor. Fiz. 47 1919 (1964)

    Google Scholar 

  33. E A Novikov Sov. Phys. JETP 20 1290 (1965)

    Google Scholar 

  34. R F Fox Phys. Rev. A 34 4525 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  35. P Hänggi, F Mroczkowski, F Moss and P V E McClintock Phys. Rev. A 32 695 (1985)

    Article  ADS  Google Scholar 

  36. P Hänggi, F Marchesoni and P Z Grigolini Phys. B 56 333 (1984)

    Google Scholar 

  37. R F Fox Phys. Rev. A 33 467 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  38. S Bouzat and H S Wio Phys. Rev. E 59 5142 (1999)

    Article  ADS  Google Scholar 

  39. H S Wio and S Bouzat Braz. J. Phys. 29 136 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 11305079), the Natural Science Foundation of Yunnan Province (under 2010CD031) and the Key Project of Research Fund of Education Department of Yunnan Province (under 2001Z011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. H. Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Han, Q.L., Zeng, C.H. et al. Transition and resonance induced by colored noises in tumor model under immune surveillance. Indian J Phys 88, 1211–1219 (2014). https://doi.org/10.1007/s12648-014-0521-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-014-0521-7

Keywords

PACS Nos.

Navigation