Skip to main content
Log in

Loss and recycling of amino acids and protein from smooth cordgrass (Spartina alterniflora) litter

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

We investigated the source and composition of free and protein-bound amino acids during the decomposition ofSpartina alterniflora Loisel in laboratory percolators and in a field experiment in the Great Sippewissett Marsh (Falmouth, Massachusetts). In the percolator experiment, 50% of the nitrogen (N) could be extracted fromS. alterniflora litter in 16 d. This extract consisted of dissolved free amino acid N (28%), suspended protein amino acid N (16%), inorganic N (12%), and nitrogen from unidentified compounds (44%). Much of the free amino acid nitrogen was utilized by detrital microorganisms, resulting in a greater loss of suspended protein amino acid (SPAA) nitrogen from the biologically active percolator due to microbials biomass. Suspended microbial mass accounted for at least 50% of the SPAA washed out of the biologically active percolator. In the field study, 38% of the original litter nitrogen was leached fromS. alterniflora litter in litterbags during the first 13 d. After this initial leaching period, the concentration (41% to 69% of total nitrogen) and composition of most amino acids bound in the litter did not change over the 23-month period of the experiment. Increases in microbial protein did not account for increases in total nitrogen which occurred during the decomposition of the litter. Similarly, adsorbed ammonium did not appear to be responsible for this increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Baddeley, M. S. 1971. Biochemical aspects of sensescence, p. 415–429.In T. F. Preece and C. H. Dickinson (eds.), Ecology of Leaf Surface Microorganisms. Academic Press, Inc., New York.

    Google Scholar 

  • Beevers, L. 1976. Nitrogen Metabolism in Plants. Elsevier Publishing Co., New York. 333 p.

    Google Scholar 

  • Benner, R., S. Y. Newell, A. E. Maccubbin andR. E. Hodson. 1984. Relative contributions of bacteria and fungi to rates of degradation of lignocellulosic detritus in salt-marsh sediments.Applied and Environmental Microbiology 48:36–40.

    Google Scholar 

  • Boas, N. F. 1953. Method for the determination of hexosamines in tissues.Journal of Biological Chemistry 204:553–563.

    CAS  Google Scholar 

  • Cavalieri, A. J. andA. H. C. Huang. 1981. Accumulation of proline and glycinebetaine inSpartina alterniflora Loisel in response to NaCl and nitrogen in the marsh.Oecologia 49:224–228.

    Article  Google Scholar 

  • de la Cruiz, A. A. andW. E. Poe. 1975. Amino acids in salt marsh detritus.Limnology and Oceanography 20:124–127.

    Article  Google Scholar 

  • Ferguson, R. L. andP. Rublee. 1976. Contribution of bacteria to standing crop of coastal plankton.Limnology and Oceanography 21:875–882.

    Google Scholar 

  • Geesey, G. G. 1982. Microbial exopolymers: Ecological and economic considerations.ASM News 40:9–14.

    Google Scholar 

  • Hall, K. J., W. C. Weiner, andG. Lee 1970. Amino acids in an estuarine environment.Limnology and Oceanography 15: 162–164.

    CAS  Google Scholar 

  • Handley, W. R. C. 1961. Further evidence for the importance of residual leaf protein complexes in litter decomposition and the supply of nitrogen for plant growth.Plant and Soil 15: 37–73.

    Article  CAS  Google Scholar 

  • Hedges, J. 1978. The formation and clay mineral reactions of melanoidins.Geochimica et Cosmochimica Acta 42:69–76.

    Article  CAS  Google Scholar 

  • Henrichs, S. M. 1980. Biogeochemistry of dissolved free amino acids in marine sediments. Ph.D. dissertation, Woods Hole Oceanographic Institution-Massachusetts Institute of Technology Joint Program, W.H.O.I. Technical Report 80-39. Woods Hole, Massachusetts. 253 p.

  • Henrichs, S. M. andJ. W. Farrington. 1987. Early diagenesis of amino acids and organic matter in two coastal sediments.Geochimica et Cosmochimica Acta 51:1–15.

    Article  CAS  Google Scholar 

  • Hicks, R. E. 1983. Microbial growth during the initial decomposition ofSpartina alterniflora leaves. Ph.D. dissertation, University of Georgia, Athens, Georgia. 244 p.

    Google Scholar 

  • Hicks, R. E. andS. Y. Newell. 1984a. A comparison of glucosamine and biovolume conversion factors for estimating fungal biomass.Oikos 42:355–360.

    Article  CAS  Google Scholar 

  • Hicks, R. E. andS. Y. Newell. 1984b. The growth of bacteria and the fungusPhaeoshpaeria typharum (Desm.) Holm (Eumycota: Ascomycotina) in salt-marsh microcosms in the presence and absence of mercury.Journal of Experimental marine Biology and Ecology 78:143–155.

    Article  CAS  Google Scholar 

  • Hobbie, J. E. andC. Lee. 1980. Microbial production of extracellular material: Importance in benthic ecology, p. 341–346.In K. R. Tenore and B. C. Coull (eds.), Marine Benthic Dynamics. University of South Carolina Press, Columbia, South Carolina.

    Google Scholar 

  • Hopkinson, C. S. andJ. P. Schubauer. 1984. Static and dynamic aspects of nitrogen cycling in the salt marsh graminoidSpartina alterniflora.Ecology 65:961–969.

    Article  Google Scholar 

  • Jones, B. N., S. Paabo, andS. Stein. 1981. Amino acid analysis and enzymatic sequence determination of peptides by an improvedo-phthaldialdehyde precolumn labeling procedure.Journal of Liquid Chromatography 4:565–586.

    Article  CAS  Google Scholar 

  • Kaushik, N. K. andH. B. Hynes. 1971. The fate of dead leaves that fall into streams.Archiv für Hydrobiologie 68:465–515.

    Google Scholar 

  • King, G. M. 1988. Distribution and metabolism of quaternary amines in marine sediments, p. 143–173.In T. H. Blackburn and J. Sorensen (eds.) Nitrogen Cycling in Coastal Marine Environments. John Wiley and Sons, Ltd, New York.

    Google Scholar 

  • Lee, C., R. W. Howarth, andB. L. Howes. 1980. Sterols in decomposingSpartina alterniflora and the use of ergosterol in estimating the contribution of fungi to detrital nitrogen.Limnology and Oceanography 25:290–303.

    CAS  Google Scholar 

  • Lee, C. andC. Cronin. 1982. The vertical flux of particulate organic nitrogen in the sea: Decomposition of amino acids in the Peru upwelling area and the equatorial Atlantic.Journal of Marine Research 40:227–251.

    CAS  Google Scholar 

  • Lindroth, P. andK. Mopper. 1979. High performance liquid chromatographic determination of subpicomole amounts of amino acids by precolumn fluorescence derivitization witho-phthaldialdehyde.Analytical Chemistry 51:1667–1674.

    Article  CAS  Google Scholar 

  • Lohrenz, S. E. 1985. Primary production of particulate protein amino acids: Algal protein metabolism and its relationship to the composition of particulate organic matter. Ph.D. Dissertation, Woods Hole Oceanographic Institution-Massachusetts Institute of Technology. Woods Hole, Massachusetts. 453 p.

    Google Scholar 

  • Maccubin, A. E. andR. E. Hodson. 1980. Mineralization of detrital lignocelluloses by salt marsh sediment microflora.Applied and Environmental Microbiology 40:735–740.

    Google Scholar 

  • Mackin, J. E. andR. C. Aller. 1984. Ammonium adsorption in marine sediments.Limnology and Oceanography 29:250–257.

    CAS  Google Scholar 

  • Mann, K. H. 1972. Macrophyte production and detritus food chains in coastal waters.Memorie dell’istituto Italiano di Idrobiologia dott Marco de Marchi 29(suppl.):353–383.

    Google Scholar 

  • Marinucci, A. C. 1982. Carbon and nitrogen fluxes during decomposition ofSpartina alterniflora in a flow-through percolator.Biological Bulletin 162:54–69.

    Article  Google Scholar 

  • Marinucci, A. C., J. E. Hobbie, andJ. V. K. Helerich. 1983. Effect of litter nitrogen on decomposition and microbial biomass inSpartina alterniflora.Microbial Ecology 9:27–40.

    Article  Google Scholar 

  • Mopper, K. andP. Lindroth. 1982. Diel and depth variations in dissolved free amino acids and ammonium in the Baltic Sea determined by shipboard HPLC analysis.Limnology and Oceanography 27:336–347.

    CAS  Google Scholar 

  • Moriarty, D. J. W. 1977. Improved method using muramic acid to estimate biomass of bacteria in sediments.Oecologia 26:317–323.

    Article  Google Scholar 

  • Newell, R. 1965. The role of detritus in the nutrition of two marine deposit feeders, the prosobranchHydrobia ulvae and the bivalveMacoma baltica Proceedings of the Zoological Society of London 114:25–45.

    Google Scholar 

  • Newell, S. Y., R. D. Fallon, andJ. D. Miller. 1989. Decomposition and microbial dynamics for standing, naturally positioned leaves of the salt marsh grassSpartina alterniflora.Marine Biology 101:471–481.

    Article  Google Scholar 

  • Odum, E. P. andA. A. de la Cruz. 1967. Particulate organic detritus in a Georgia salt marsh-estuarine system, p. 383–388.In G. H. Lauff (ed.), Estuaries. American Association for the Advancement of Science, Publication number 83, American Association for the Advancement of Science. Washington, D.C.

    Google Scholar 

  • Porter, K. andY. S. Feig. 1980. The use of DAPI for identifying and counting the aquatic microflora.Limnology and Oceanography 25:943–948.

    Google Scholar 

  • Rice, D. L. 1982. The detritus nitrogen problems: New observations and perspectives from organic geochemistry.Marine Ecology Progress Series 9:153–162.

    Article  CAS  Google Scholar 

  • Rice, D. L. andR. B. Hanson. 1984. A kinetic model for detritus nitrogen: The role of the associated microflora in nitrogen accumulation.Bulletin of Marine Science 35:326–340.

    Google Scholar 

  • Rublee, P., L. Cammen, and J. Hobbie. 1978. Bacteria in a North Carolina salt marsh: Standing crop and importance in the decomposition ofSpartina alterniflora. University of North Carolina Sea Grant Publication UNC-SG-78-11, Raleigh, North Carolina.

  • Salton, M. R. J. 1960. Microbial Cell Walls. John Wiley and Sons, New York. 94 p.

    Google Scholar 

  • Suberkropp, K. andM. J. Klug. 1976. Fungi and bacteria associated with leaves during processing in a woodland stream.Ecology 57:707–719.

    Article  Google Scholar 

  • Suberkropp, K., G. L. Godshalk, andM. J. Klug. 1976. Changes in the chemical composition of leaves during processing in a woodland stream.Ecology 57:720–727.

    Article  CAS  Google Scholar 

  • Valiela, I., J. M. Teal, S. D. Allen, R. Van Etten, D. Goehringer, andS. Volkmann. 1985. Decomposition in salt marsh ecosystems: The phases and major factors affecting disappearance of above-ground organic matter.Journal of Experimental Marine Biology and Ecology 89:29–54.

    Article  CAS  Google Scholar 

  • Wiedmeier, V. T., S. P. Porterfield, andC. E. Hendrich. 1982. Quantitation of Dns-amino acids from body tissues and fluids using high-performance liquid chromatography.Journal of Chromatography 237:410–417.

    Google Scholar 

  • Wilson, J. O., R. Buchsbaum, I. Valiela, andT. Swain. 1986. Decomposition in salt marsh ecosystems: Phenolic dynamics during decay of litter ofSpartina alternifloras.Marine Ecology Progress Series 9:177–187.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hicks, R.E., Lee, C. & Marinucci, A.C. Loss and recycling of amino acids and protein from smooth cordgrass (Spartina alterniflora) litter. Estuaries 14, 430–439 (1991). https://doi.org/10.2307/1352267

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1352267

Keywords

Navigation