Skip to main content
Log in

Characteristics of Microfluidic Paper-based Analytical Devices Fabricated by Four Different Methods

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

We report on the effects of fabrication methods, photolithography, wax printing, screen printing, and craft cutting, on selected properties of microfluidic paper-based analytical devices (μPADs): cost, fabrication precision, wicking rate, and analytical accuracy. Photolithography requires numerous fabrication steps, and an oxygen plasma treatment is necessary when using an aqueous solution. Although the boundary between the hydrophobic and hydrophilic areas in the μPAD is sharpest, the obtained K-scale intensity in measuring of protein concentrations is lower than those of the devices by other methods. Wax printing offers the simplest and fastest fabrication, although solution leakage measures should be taken to improve the wicking rate and to prevent cross-contamination. Screen printing also offers easy fabrication. The screenprinted μPAD has a good wicking performance and shows a high detection intensity. Craft cutting allows automated fabrication of many μPADs at once. The craft cut μPAD has the fastest wicking rate among the four μPADs due to bare cellulose fibers. We consider that the detection intensity of this μPAD can be raised by optimizing the evaporation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Yang, E. Noviana, M. P. Nguyen, B. J. Geiss, D. S. Dandy, and C. S. Henry, Anal. Chem., 2017, 89, 71.

    Article  CAS  PubMed  Google Scholar 

  2. L. S. A. Busa, S. Mohammadi, M. Maeki, A. Ishida, H. Tani, and M. Tokeshi, Micromachines, 2016, 7, 86.

    Article  PubMed  PubMed Central  Google Scholar 

  3. D. Cheng, X. Zhang, X. Li, L. Hou, and C. Wang, Anal. Sci., 2017, 33, 185.

    Article  CAS  PubMed  Google Scholar 

  4. N. A. Meredith, C. Quinn, D. M. Cate, T. H. Reilly, J. Volckens, and C. S. Henry, Talanta, 2016, 141, 1847.

    Google Scholar 

  5. L. H. Mujawar, A. A. Felemban, and M. S. El-Shahawa, Anal. Sci, 2016, 32, 491.

    Article  CAS  PubMed  Google Scholar 

  6. L. Syedmoradi, M. Daneshpour, M. Alvandipour, F. A. Gomez, H. Hajghassem, and K. Omidfar, Biosens. Bioelectron., 2016, 86, 353.

    Article  Google Scholar 

  7. F. Hori, Y. Harada, T. Kuretake and S. Uno, Anal. Sci., 2016, 32, 355.

    Article  CAS  PubMed  Google Scholar 

  8. J. Sittiwong and F. Unob, Anal. Sci., 2016, 32, 639.

    Article  CAS  PubMed  Google Scholar 

  9. K. Tominaga, S. Arimoto, K. Shimono, T. Yoshioka, F. Mizutani, and T. Yasukawa, Anal. Sci., 2017, 33, 531.

    Article  CAS  PubMed  Google Scholar 

  10. A. W. Martinez, S. T. Philips, M. J. Butte, and G. M. Whitesides, Angew. Chem. Int. Ed., 2007, 46, 1318.

    Article  CAS  Google Scholar 

  11. A. W. Martinez, S. T. Phillips, G. M. Whitesides, and E. Carrilho, Anal. Chem., 2010, 82, 3.

    Article  CAS  PubMed  Google Scholar 

  12. L. S. A. Busa, T. Komatsu, S. Mohammadi, M. Maeki, A. Ishida, H. Tani, and M. Tokeshi, Anal. Sci., 2016, 32, 815.

    Article  CAS  PubMed  Google Scholar 

  13. E. Carrilho, A. W. Martinez, and G. M. Whitesides, Anal. Chem., 2009, 81, 7091.

    Article  CAS  PubMed  Google Scholar 

  14. K. Ogawa and T. Kaneta, Anal. Sci., 2016, 32, 31.

    Article  CAS  PubMed  Google Scholar 

  15. K. Abe, K. Suzuki, and D. Citterio, Anal. Chem., 2008, 80, 6928.

    Article  CAS  PubMed  Google Scholar 

  16. X. Li, J. Tian, and W. Shen, Cellulose, 2010, 17, 649.

    Article  Google Scholar 

  17. J. L. Delaney, C. F. Hogan, J. Tain, and W. Shen, Anal. Chem., 2011, 83, 1300.

    Article  CAS  PubMed  Google Scholar 

  18. X. Yan, Y. Zheng, J. Gao, and J. Lee, Anal. Sci., 2017, 33, 1.

    Article  PubMed  Google Scholar 

  19. S. Mohammadi, M. Maeki, R. M. Mohamadi, A. Ishida, H. Tani, and M. Tokeshi, Analyst, 2015, 140, 6493.

    Article  CAS  PubMed  Google Scholar 

  20. W. Dungchai, O. Chailapakul, and C. S. Henry, Anal. Chem., 2009, 81, 5821.

    Article  CAS  PubMed  Google Scholar 

  21. Y. Sameenoi, P. N. Nongkai, S. Nouanthavong, C. S. Henry, and D. Nacapricha, Analyst, 2014, 139, 6580.

    Article  CAS  PubMed  Google Scholar 

  22. J.-Y. Sun, C.-M. Cheng, and Y.-C. Liao, Anal. Sci., 2015, 31, 145.

    Article  CAS  PubMed  Google Scholar 

  23. W. Liu, Y. Guo, M. Zhao, H. Li, and Z. Zhang, Anal. Chem., 2015, 87, 7951.

    Article  CAS  PubMed  Google Scholar 

  24. J. Yu, S. Wang, L. Ge, and S. Ge, Biosens. Bioelectron., 2011, 26, 3284.

    Article  CAS  PubMed  Google Scholar 

  25. P. K. Yuen, and V. N. Goral, Lab Chip, 2010, 10, 384.

    Article  CAS  PubMed  Google Scholar 

  26. X. Li, D. R. Ballerini, and W. Shen, Biomicrofluidics, 2012, 6, 011301.

    Article  PubMed Central  Google Scholar 

  27. A. K. Yetisen, M. S. Akram, and C. R. Lowe, Lab Chip, 2013, 13, 2210.

    Article  CAS  PubMed  Google Scholar 

  28. L. S. A. Busa, M. Maeki, A. Ishida, H. Tani, and M. Tokeshi, Sens. Actuators, B, 2016, 236, 433.

    Article  CAS  Google Scholar 

  29. T. Komatsu, S. Mohammadi, L. S. A. Busa, M. Maeki, A. Ishida, H. Tani, and M. Tokeshi, Analyst, 2016, 141, 6507.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Urakami Foundation for Food and Food Culture Promotion. We acknowledge JASCO International Co., Ltd., for taking SEM images. T. K. thanks the Ambitious Leaders’ Program for Fostering Future Leaders to Open New Frontiers in Materials Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Tokeshi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komatsu, T., Maeki, M., Ishida, A. et al. Characteristics of Microfluidic Paper-based Analytical Devices Fabricated by Four Different Methods. ANAL. SCI. 34, 39–44 (2018). https://doi.org/10.2116/analsci.34.39

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.34.39

Keywords

Navigation