Skip to main content
Log in

Low-temperature Electronic Paramagnetic Resonance Measurements of TEMPO and 4-Hydroxy-TEMPO Benzoate for Purity Analyses by the Effective Magnetic-moment Method

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The purities of two high-purity organic compounds with a nitroxyl radical moiety were quantified based on their free-radical content using the effective magnetic-moment method. Magnetic moments were measured and X-band electron paramagnetic resonance (EPR) spectra were obtained using a superconducting quantum interference device and X-band EPR spectrometer, respectively, over a wide temperature range of near-room temperature to near-liquid-helium temperature. Concerning measurements of effective g-values using an EPR spectrometer, both the sweep direction and sweep speed were taken into account to obtain accurate g-values. The purities of 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) and 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl benzoate (4-hydroxy-TEMPO benzoate) were close to 1 kg kg−1 with relative uncertainties of 1%, which represented improved values compared to those obtained by us previously. These results show a possibility for both compounds to act as reference materials in providing reliable quantification of free radicals per unit mass using this analytical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ISO Guide 35-2006, “Reference Materials-General and Statistical Principles for Certification”, 3rd ed., 2006, International Organization for Standardization, Switzerland, 31.

    Google Scholar 

  2. D. A. Skoog, D. M. West, F. J. Holler, and S. R. Crouch, “Analytical Chemistry: An Introduction”, 7th ed., 2000, Harcourt College Publishers, Orlando, Florida, 699.

    Google Scholar 

  3. M. J. T. Milton and T. J. Quinn, Metrologia, 2001, 38, 289.

    Article  CAS  Google Scholar 

  4. N. Matsumoto and T. Shimosaka, J. Appl. Phys., 2015, 117, 17E114.

    Article  Google Scholar 

  5. N. Matsumoto and K. Kato, Metrologia, 2012, 49, 530.

    Article  CAS  Google Scholar 

  6. N. Matsumoto and T. Shimosaka, Accredit. Qual. Assur., 2015, 20, 115.

    Article  Google Scholar 

  7. N. Matsumoto, Bunseki, 2016, 63.

    Google Scholar 

  8. C. Kittel, “Introduction to Solid State Physics”, 7th ed., 1996, Chap. 14-15, John Wiley & Sons, Inc., New York.

    Google Scholar 

  9. C. Corvaja, “Electron Paramagnetic Resonance: A Practitioner’s Toolkit”, ed. M. Burustolon and E. Giamello, 2009, John Wiley & Sons, Inc., NJ, 8.

  10. M. Kohno, T. Yoshikawa, and T. Ozawa, “Introduction to Electron Spin Resonance for Bioscientists”, 2011, Chap. 2, Kodansha Ltd., Tokyo.

    Google Scholar 

  11. R. Shvartzman-Cohen, I. Monje, and M. Florent, Macromolecules, 2010, 43, 606.

    Article  CAS  Google Scholar 

  12. S. Ruthstein and D. Goldfarb, J. Phys. Chem. C, 2008, 112, 7102.

    Article  CAS  Google Scholar 

  13. S. Ruthstein, A. Potapov, and A. M. Raitsimring, J. Phys. Chem. B, 2005, 109, 22843.

    Article  CAS  PubMed  Google Scholar 

  14. Y. S. Karimov and E. G. Rozantsev, Soviet Phys. Solid State, 1967, 8, 2225.

    Google Scholar 

  15. Y. S. Karimov ZhETF Pis’ma Red, 1968, 8, 239.

    CAS  Google Scholar 

  16. J. Yamauchi, Bull. Chem. Soc. Jpn., 1971, 44, 2301.

    Article  CAS  Google Scholar 

  17. T. Yoshioka, Bull. Chem. Soc. Jpn., 1977, 50, 1372.

    Article  CAS  Google Scholar 

  18. K. Takeda, N. Uryu, M. Inoue, and J. Yamauchi, J. Phys. Soc. Jpn. 1987, 56, 736.

    Article  CAS  Google Scholar 

  19. M. Kohno, “Electron Spin Resonance”, 2003, Ohmsha, 47.

    Google Scholar 

  20. P. H. Rieger, “Electron Spin Resonance: Analysis and Interpretation”, 2007, RSC Publishing, Cambridge, 102.

    Google Scholar 

  21. P. Gans, “Data Fitting in the Chemical Sciences by the Method of Least Squares”, 1992, Wiley, Chichester, 30–34.

    Google Scholar 

  22. W. E. Deming, “Statistical Adjustment of Data”, 1943, John Wiley and Sons, Inc., New York.

    Google Scholar 

  23. S. Blundell, “Magnetism in Condensed Matter”, 2001, Oxford University Press, New York, 29.

    Google Scholar 

  24. D. Ondercin, T. Sandreczki, and R. W. Kreilick, J. Magn. Reson., 1979, 34, 151.

    CAS  Google Scholar 

  25. T. Fujito, Bull. Chem. Soc. Jpn., 1981, 54, 3110.

    Article  CAS  Google Scholar 

  26. K. Mukai, H. Nishiguchi, and Y. Deguchi, J. Phys. Soc. Jpn., 1967, 23, 125.

    Article  CAS  Google Scholar 

  27. T. Kebukawa, Prog. Theor. Phys., 1985, 74, 1.

    Article  Google Scholar 

Download references

Acknowledgments

A part of this work was conducted in the AIST Nano-Processing Facility supported by the Nanotechnology Platform Program (Nanofabrication), part of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. Low-temperature EPR measurements were conducted at the Institute for Molecular Science, National Institutes of Natural Sciences, supported by the Nanotechnology Platform Program (Molecule and Material Synthesis) under the same ministry. Part of this work was supported by JSPS KAKENHI Grant Nos. 24750077 and 17K05918.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuhiro Matsumoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsumoto, N., Shimosaka, T. Low-temperature Electronic Paramagnetic Resonance Measurements of TEMPO and 4-Hydroxy-TEMPO Benzoate for Purity Analyses by the Effective Magnetic-moment Method. ANAL. SCI. 33, 1059–1065 (2017). https://doi.org/10.2116/analsci.33.1059

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.33.1059

Keywords

Navigation