Skip to main content
Log in

Aptamer-based Resonance Light Scattering for Sensitive Detection of Acetamiprid

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

In this work, an aptasensor-based resonance light-scattering (RLS) method was developed for the sensitive and selective detection of acetamiprid. The ABA (acetamiprid binding aptamer)-stabilized gold nanoparticles (ABA-AuNPs) were used as a probe. Highly specific single-strand DNA (ssDNA, i.e, aptamers) that bind to acetamiprid with high affinity were employed to discriminate other pesticides, such as edifenphos, kanamycin, metribuzin et. al. The sensing approach is based on a specific interaction between acetamiprid and ABA. Aggregation of AuNPs was specifically induced by the desorption of the ABA from the surface of AuNPs, which caused the RLS signal intensity to be enhanced at 700 nm. The alteration of AuNPs’ aggregation has been successfully optimized by controlling several conditions. Under the optimal conditions, the RLS intensity changes (I/I0) of AuNPs were linearly correlated with the acetamiprid concentration in the range of 0–100 nM. The detection limit is 1.2 nM (3σ). This method had also been used for acetamiprid detection in lake water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Q. Jin, Q. Xu, L. Y. Yu, A. R. Mao, and X. Y. Hu, Food. Chem., 2016, 794, 959.

    Article  Google Scholar 

  2. X. A. Zhang, N. Mobley, J. G. Zang, X. M. Zheng, L. Lu, O. Ragin, and C. J. Smith, J. Agric. Food Chem., 2010, 58, 11553.

    Article  CAS  PubMed  Google Scholar 

  3. C. Mohan, Y. Kumar, J. Madan, and N. Saxena, Environ. Monit. Assess., 2010, 765, 573.

    Article  Google Scholar 

  4. H. Obana, M. Okihashi, K. Akutsu, Y. Kitagawa, and S. Hori, J. Agric. Food Chem., 2002, 50, 4464.

    Article  CAS  PubMed  Google Scholar 

  5. S. Watanabe, S. Ito, Y. Kamata, N. Omoda, T. Yamazaki, H. Munakata, T. Kaneko, and Y. Yuasa, Anal. Chim. Acta, 2001, 427, 211.

    Article  Google Scholar 

  6. E. Watanabe, S. Miyake, K. Baba, H. Eun, and S. Endo, Anal. Bioanal., 2006, 386, 1441.

    Article  CAS  Google Scholar 

  7. W. Xie, C. Han, Y. Qian, H. Y. Ding, X. M. Chen, and J. Y. Xi, J. Chromatogr. A, 2011, 7278, 4426.

    Article  Google Scholar 

  8. P. Fidente, S. Seccia, F. Vanni, and P. Morrica, J. Chromatogr. A, 2005, 7094, 175.

    Article  Google Scholar 

  9. A. Di Muccio, P. Fidente, D. A. Barbini, R. Dommarco, S. Seccia, and P. Morrica, J. Chromatogr. A, 2006, 7708, 1.

    Article  Google Scholar 

  10. A. Marin, L. Martinez Vidal, F. J. Egea Gonzalez, A. Garrido Frenich, C. R. Glass, and M. Sykes, J. Chromatogr. B, 2004, 804, 269.

    Article  CAS  Google Scholar 

  11. A. D. Ellington and J. W. Szostak, Nature, 1990, 346, 818.

    Article  CAS  PubMed  Google Scholar 

  12. P. S. Lau and Y. F. Li, Curr. Org. Chem., 2011, 75, 557.

    Google Scholar 

  13. E. S. Hong, H. J. Yoon, B. Kim, Y. H. Yim, and H. Y. So, J. Am. Soc. Mass. Spectrom., 2010, 27, 1245.

    Article  Google Scholar 

  14. M. Y. Ho, N. D’Souza, and P. Migliorato, Anal. Chem., 2012, 84, 4245.

    Article  CAS  PubMed  Google Scholar 

  15. H. Wei, B. L. Li, J. Li, E. K. Wang, and S. J. Dong, Chem. Commun., 2007, 36, 3735.

    Article  Google Scholar 

  16. H. Fan, H. Li, Q. Wang, P. He, and Y. Fang, Biosens. Bioelectron., 2012, 35, 233.

    Article  Google Scholar 

  17. P. Luo, Y. Liu, Y. Xia, H. Xu, and G. Xie, Biosens. Bioelectron., 2014, 54, 217.

    Article  CAS  PubMed  Google Scholar 

  18. L. Wang, W. Ma, W. Chen, L. Liu, W. Ma, Y. Zhu, L. Xu, H. Kuang, and C. Xu, Biosens. Bioelectron., 2011, 25, 3059.

    Article  Google Scholar 

  19. J. E. Smith, C. D. Medley, T. Zhiwen, S. Dihua, and L. Charles, Anal. Chem., 2007, 79, 3075.

    Article  CAS  PubMed  Google Scholar 

  20. Y. Xu, J. A. Phillips, J. Yan, Q. Li, and Z. H. Fan, Anal. Chem., 2009, 87, 7436.

    Article  Google Scholar 

  21. A. Sassolas, L. J. Blum, and B. D. Leca-Bouvier, Biosens. Bioelectron., 2011, 26, 3725.

    Article  CAS  PubMed  Google Scholar 

  22. Y. L. Wen, H. Pei, Y. Wan, Y. Su, Q. Huang, S. P. Song, and C. H. Fan, Anal. Chem., 2011, 83, 7418.

    Article  CAS  PubMed  Google Scholar 

  23. Z. Chen, Y. Tan, C. Zhang, L. Yin, and H. Ma, Biosens. Bioelectron., 2014, 56, 46.

    Article  CAS  PubMed  Google Scholar 

  24. L. He, Y. Luo, W. Zhi, Y. Wu, and P. Zhou, Aust. J. Chem., 2013, 66, 485.

    Article  CAS  Google Scholar 

  25. H. J. Shi, G. H. Zhao, M. C. Liu, L. F. Fan, and T. C. Cao, J. Hazard. Mater., 2013, 260, 754.

    Article  CAS  PubMed  Google Scholar 

  26. Z. T. Yang, J. Qian, X. W. Yang, D. Jiang, X. J. Du, K. Wang, H. P. Mao, and K. Wang, Biosens. Bioelectron., 2015, 65, 39.

    Article  CAS  PubMed  Google Scholar 

  27. X. Yan, H. X. Li, Y. Li, and X. G. Su, Anal. Chim. Acta, 2014, 852, 189.

    Article  CAS  PubMed  Google Scholar 

  28. K. A. Marx, T. Zhou, A. Montrone, H. Schulze, and S. J. Braunhut, Biosens. Bioelectron., 2001, 76, 773.

    Article  Google Scholar 

  29. C. Li, S. Liu, L. H. Guo, and D. Chen, Electrochem. Commun., 2005, 7, 23.

    Article  CAS  Google Scholar 

  30. Y. Wei, K. Wu, Y. Wu, and S. Hu, Electrochem. Commum., 2003, 5, 819.

    Article  CAS  Google Scholar 

  31. L. F. Fan, G. H. Zhao, H. J. Shi, M. C. Liu, and Z. X. Li, Biosens. Bioelectron., 2013, 43, 12

    Article  CAS  PubMed  Google Scholar 

  32. B. Li, H. Wei, and S. Dong, Chem. Commun., 2006, 7, 73.

    Google Scholar 

  33. R. Verma and B. D. Gupta, Food Chem., 2015, 766, 568.

    Article  Google Scholar 

  34. G. R. Fang, Z. X. Cai, G. W. Song, and L. Li, J. Hubei Univ., 2003, 25, 233.

    CAS  Google Scholar 

  35. Z. P. Li, K. A. Li, and S. Y. Tong, Talanta, 2001, 55, 669.

    Article  CAS  PubMed  Google Scholar 

  36. J. J. Cheng, Y. Sun, L. Zhou, K. C. Zhang, J. Wang, Z. Y. Wu, and R. J. Pei, RSCAdv., 2014, 4, 56731.

    CAS  Google Scholar 

  37. L. Y. Ji, Y. H. Guo, S. N. Hong, Z. L. Wang, K. W. Wang, X. Chen, J. Y. Zhang, J. M. Hu, and R. J. Pei, RSC Adv., 2015, 5, 36582.

    Article  CAS  Google Scholar 

  38. B. Zhou, L. F. Shi, Y. S. Wang, H. X. Yang, J. H. Xue, L. Liu, Y. S. Wang, J. C. Yin, and J. C. Wang, Spectrochim. Acta, Part A, 2013, 770, 419.

    Article  Google Scholar 

  39. J. A. He, Y. A. Liu, M. T. Fan, and X. J. Liu, J. Agric. Food Chem., 2011, 59, 1582.

    Article  CAS  PubMed  Google Scholar 

  40. K. C. Grabar, R. G. Freeman, M. B. Hommer, and M. J. Natan, Anal. Chem., 1995, 67, 735.

    Article  CAS  Google Scholar 

  41. L. M. Demers, C. A. Mirkin, R. Mucic, R. L. Reynolds, R. Letsinger, R. Elghanian, and G. Viswanadham, Anal. Chem., 2000, 72, 5535.

    Article  CAS  PubMed  Google Scholar 

  42. C. K. Wang, D. J. Liu, and Z. X. Wang, Chem. Commun., 2011, 47, 9339.

    Article  CAS  Google Scholar 

  43. L. J. Ou, P. Y. Jin, X. Chu, J. H. Jiang, and R. Q. Yu, Anal. Chem., 2010, 82, 6015.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the NSFC (No. 21305032), China Postdoctoral Science Foundation (No. 2014M551522), Jiangsu Planned Projects for Postdoctoral Research Funds (1402073B), Research Foundation of Jiangsu University (No. 13JDG069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengke Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Chen, D., Wang, Q. et al. Aptamer-based Resonance Light Scattering for Sensitive Detection of Acetamiprid. ANAL. SCI. 32, 757–762 (2016). https://doi.org/10.2116/analsci.32.757

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.32.757

Keywords

Navigation