Skip to main content
Log in

Consideration of Inner and Outer Phase Configuration in Tube Radial Distribution Phenomenon Based on Viscous Dissipation in a Microfluidic Flow Using Various Types of Mixed Solvent Solutions

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

When mixed solvent solutions, such as ternary water–hydrophilic/hydrophobic organic solvents, water–surfactant, and water–ionic liquid, are delivered into a microspace under laminar flow conditions, the solvent molecules radially distribute in the microspace, generating inner and outer phases. This specific fluidic behavior is termed “tube radial distribution phenomenon”, and has been used in separation technologies such as chromatography and extraction. The factors influencing the configuration of the inner and outer phases in “tube radial distribution phenomenon” using the abovementioned mixed solvent solutions were considered from the viewpoint of viscous dissipation in fluidic flows. When the difference in the viscosity between the two phases was large (approximately >0.73 mPa·s), the phase with the higher viscosity formed as an inner phase regardless of the volume ratio. The distribution pattern of the solvents was supported by the viscous dissipation principle. Contrarily, when the difference was small (approximately <0.49 mPa·s), the phase with the larger volume formed as the inner phase. The distribution pattern of the solvents did not always correspond to the viscous dissipation principle. The current findings are expected to be useful in analytical science including microflow analysis research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. F. Reuss, Proceedings of the Imperial Society of Naturalists of Moscow, 1809, 2, 327.

    Google Scholar 

  2. G. Hagen, Ann. Phys. Chem., 1839, 46, 423.

    Article  Google Scholar 

  3. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, “Transport Phenomena”, 2nd ed., 2002, Chap. 2, Wiley, Toronto.

    Google Scholar 

  4. J. W. Jorgenson and K. D. Lukacs, Anal. Chem., 1981, 53, 1298.

    Article  CAS  Google Scholar 

  5. H. Small, J. Colloid Interface Sci., 1974, 48, 147.

    Article  CAS  Google Scholar 

  6. T. Ami, K. Awata, H. Umekawa, and M. Ozawa, Jpn. J. Multiphase Flow, 2012, 26, 302.

    Article  Google Scholar 

  7. H. Foroughi and M. Kawaji, Int. J. Multiphase Flow, 2011, 37, 1147.

    Article  CAS  Google Scholar 

  8. M. Kashid and L. K. Minsker, Chem. Eng. Prog., 2011, 50, 972.

    Article  CAS  Google Scholar 

  9. J. Jovanovic, E. V. Rebrov, T. A. X. Nijhuis, M. T. Kretzer, V. Hessel, and J. C. Schouten, Ind. Eng. Chem. Res., 2012, 57, 1015.

    Article  Google Scholar 

  10. N. Jinno, M. Murakami, K. Mizohata, M. Hashimoto, and K. Tsukagoshi, Analyst, 2011, 135, 927.

    Article  Google Scholar 

  11. M. Murakami, N. Jinno, M. Hashimoto, and K. Tsukagoshi, Anal. Sci., 2011, 27, 793.

    Article  CAS  PubMed  Google Scholar 

  12. S. Fujinaga, K. Unesaki, S. Negi, M. Hashimoto, and K. Tsukagoshi, Anal. Methods, 2012, 4, 3884.

    Article  CAS  Google Scholar 

  13. K. Tsukagoshi, Anal. Sci., 2014, 30, 65.

    Article  CAS  PubMed  Google Scholar 

  14. S. Fujinaga, K. Unesaki, Y. Kawai, K. Kitaguchi, K. Nagatani, M. Hashimoto, K. Tsukagoshi, and J. Mizushima, Anal. Sci., 2014, 30, 1005.

    Article  CAS  PubMed  Google Scholar 

  15. S. Fujinaga, M. Hashimoto, K. Tsukagoshi, and J. Mizushima, J. Chem. Eng. Jpn., 2015, 48, 947.

    Article  CAS  Google Scholar 

  16. Y. Hamaguchi, S. Fujinaga, S. Murakami, M. Hashimoto, and K. Tsukagoshi, Chem. Lett., 2014, 43, 1318.

    Article  CAS  Google Scholar 

  17. A. E. Everagae, Trans. Soc. Rheol., 1973, 17, 629.

    Article  Google Scholar 

  18. J. H. Southern and R. L. Ballman, Appl. Polymer Symp., 1973, 20, 175.

    Google Scholar 

  19. D. L. Maclean, Trans. Aoc. Rheol., 1973, 17, 385.

    Article  Google Scholar 

  20. M. C. Williams, AlChE J., 1975, 21, 1204.

    Article  CAS  Google Scholar 

  21. D. D. Joseph, Y. Renardy, and M. Renardy, J. Fluid Mech., 1984, 141, 309.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research (C) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan (MEXT) (No. 26410165).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Tsukagoshi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujinaga, S., Hashimoto, M., Tsukagoshi, K. et al. Consideration of Inner and Outer Phase Configuration in Tube Radial Distribution Phenomenon Based on Viscous Dissipation in a Microfluidic Flow Using Various Types of Mixed Solvent Solutions. ANAL. SCI. 32, 455–461 (2016). https://doi.org/10.2116/analsci.32.455

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.32.455

Keywords

Navigation