Skip to main content
Log in

Investigation of Inner and Outer Phase Formation in Tube Radial Distribution Phenomenon Using Various Types of Mixed Solvent Solutions

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

When mixed solvent solutions, such as ternary water–hydrophilic/hydrophobic organic solvents, water–surfactant, water–ionic liquid, and fluorous–organic solvents are delivered into a microspace under laminar flow conditions, the solvent molecules are radially distributed in the microspace, generating inner and outer phases. This specific fluidic behavior is termed “tube radial distribution phenomenon” (TRDP). In this study, the factors influencing the formation of inner and outer phases in the TRDP using the above-mentioned mixed solvent solutions were investigated. We examined phase diagrams, viscosities of the two phases (upper and lower phases in a batch vessel), volume ratios of the phases, and bright-light or fluorescence photographs of the TRDP. When the difference in viscosities between the two phases was large (> approximately 0.73 mPa·s), the phase with the larger viscosity formed an inner phase regardless of the volume ratios, whereas when the difference was small (< approximately 0.42 mPa·s), the phase with the larger volume formed an inner phase. The TRDP using a water–surfactant mixed solution was also investigated in capillary chromatography based on TRDP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. E. Gutowski, G. A. Broker, H. D. Willauer, J. G. Huddleston, R. P. Swatloski, J. D. Holbrey, and R. D. Rogers, J. Am. Chem. Soc., 2003, 125, 6632.

    Article  CAS  PubMed  Google Scholar 

  2. Z. Li, Y. Pei, H. Wang, J. Fan, and J. Wang, TrAC, Trends Anal. Chem., 2010, 29, 1336.

    Article  CAS  Google Scholar 

  3. Y. Lu, W. Lu, W. Wang, Q. Guo, and Y. Yang, Talanta, 2011, 85, 1621.

    Article  CAS  PubMed  Google Scholar 

  4. C. Wua, J. Wanga, H. Wanga, Y. Pei, and Z. Li, J. Chromatogr. A, 2011, 1218, 8587.

    Article  Google Scholar 

  5. J. Han, Y. Wang, Y. Li, C. Yu, and Y. Yan, J. Chem. Eng. Data, 2011, 56, 3679.

    Article  CAS  Google Scholar 

  6. H. Watanabe and H. Tanaka, Talanta, 1978, 25, 585.

    Article  CAS  PubMed  Google Scholar 

  7. K. Fujinaga, Anal. Sci., 1993, 9, 479.

    Article  CAS  Google Scholar 

  8. T. Saitoh, H. Tani, T. Kamidate, and H. Watanabe, TrAC, Trends Anal. Chem., 1995, 14, 213.

    CAS  Google Scholar 

  9. T. M. Z. Moattar and R. Sadeghi, Fluid Phase Equilib., 2002, 203, 177.

    Article  Google Scholar 

  10. P. L. Trindade, M. M. Diogo, D. M. F. Prazeres, and C. J. Marcos, J. Chromatogr. A, 2005, 1082, 176.

    Article  CAS  PubMed  Google Scholar 

  11. T. I. Horváth and J. Rábai, Science, 1994, 266, 72.

    Article  PubMed  Google Scholar 

  12. K. Nakashima, F. Kubota, M. Goto, and T. Maruyama, Anal. Sci., 2009, 25, 77.

    Article  CAS  PubMed  Google Scholar 

  13. J. Lim and T. M. Swager, Angew. Chem., Int. Ed., 2010, 49, 7486.

    Article  CAS  Google Scholar 

  14. H. Matsuda, A. Kitabatake, M. Kosuge, K. Tochigi, and K. Ochi, Fluid Phase Equilib., 2010, 297, 187.

    Article  CAS  Google Scholar 

  15. C. Dennis and Z. R. Lee, Green Chem., 2001, G3.

  16. M. Masato, M. Hasegawa, D. Sadachika, S. Okamoto, M. Tomioka, Y. Ikeya, A. Masuhara, and Y. Mori, Tetrahedron Lett., 2007, 48, 4147.

    Article  Google Scholar 

  17. T. Maruyama, K. Nakashima, F. Kubota, and M. Goto, Anal. Sci., 2007, 23, 763.

    Article  PubMed  Google Scholar 

  18. N. Jinno, M. Murakami, K. Mizohata, M. Hashimoto, and K. Tsukagoshi, Analyst, 2011, 135, 927.

    Article  Google Scholar 

  19. M. Murakami, N. Jinno, M. Hashimoto, and K. Tsukagoshi, Anal. Sci., 2011, 27, 793.

    Article  CAS  PubMed  Google Scholar 

  20. S. Fujinaga, K. Unesaki, S. Negi, M. Hashimoto, and K. Tsukagoshi, Anal. Methods, 2012, 4, 3884.

    Article  CAS  Google Scholar 

  21. K. Tsukagoshi, Anal. Sci., 2014, 30, 65.

    Article  CAS  PubMed  Google Scholar 

  22. Y. Kudo, H. Kan, N. Jinno, M. Hashimoto, and K. Tsukagoshi, Anal. Methods, 2012, 4, 906.

    Article  CAS  Google Scholar 

  23. Y. Masuhara, N. Jinno, M. Hashimoto, and K. Tsukagoshi, Anal. Sci., 2012, 28, 439.

    Article  CAS  PubMed  Google Scholar 

  24. A. E. Everagae, Trans. Soc. Rheol., 1973, 17, 629.

    Article  Google Scholar 

  25. H. Sotjthernj and N. L. Ballmar, Appl. Polym. Symp., 1973, 20, 175.

    Google Scholar 

  26. J. L. White and B. L. Lee, Trans. Soc. Rheol., 1975, 19, 457.

    Article  Google Scholar 

  27. D. L. Maclean, Trans. Soc. Rheol., 1973, 17, 385.

    Article  Google Scholar 

  28. D. D. Joseph, Y. Renardy, and M. Renardy, J. Fluid Mech., 1984, 141, 309.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Tsukagoshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujinaga, S., Unesaki, K., Kawai, Y. et al. Investigation of Inner and Outer Phase Formation in Tube Radial Distribution Phenomenon Using Various Types of Mixed Solvent Solutions. ANAL. SCI. 30, 1005–1011 (2014). https://doi.org/10.2116/analsci.30.1005

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.30.1005

Keywords

Navigation