Skip to main content
Log in

Double-sided Microfluidic Device for Speciation Analysis of Iron in Water Samples: Towards Greener Analytical Chemistry

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Microfluidics minimize the amounts of reagents and generate less waste. While microdevices are commonly single-sided, producing a substrate with microchannels on multiple surfaces would increase their usefulness. Herein, a polymethymethacrylate substrate incorporating microchannel structures on two sides was sandwiched between two polydimethylsiloxane sheets to create a multi-analysis device, which was used for the spectrophotometric analysis of the ferrous ion (Fe2+) and the ferric ion (Fe3+), by utilizing colorimetric detection. To monitor the signals from both channel networks, dual optical sensors were integrated into the system. The linear ranges for Fe2+ and Fe3+ analyses were 0.1–20 mg L−1 (R2 = 0.9988) and 1.0–40 mg L−1 (R2 = 0.9974), respectively. The detection limits for Fe2+ and Fe3+ were 0.1 and 0.5 mg L−1, respectively. The percent recoveries of Fe2+ and Fe3+ were 93.5–104.3 with an RSD < 8%. The microdevice demonstrated capabilities for simultaneous analysis, low waste generation (7.2 mL h−1), and high sample throughput (180 h−1), making it ideal for greener analytical chemistry applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. M. M. Morel and J. G. Hering, “Principles and Applications of Aquatic Chemistry”, 1993, John Wiley and Sons, New York.

    Google Scholar 

  2. R. Loeb, L. P. M. Lamers, and J. G. M. Roelofs, Geoderma, 2008, 145, 84.

    Article  CAS  Google Scholar 

  3. E. G. Pereira, M. A. Oliva, L. Rosado-Souza, G. C. Mendes, D. S. Colares, C. H. Stopato, and A. M. Almeida, Plant Sci, 2013, 201-202, 81.

    Article  PubMed  Google Scholar 

  4. B. Oktavia, L. W. Lim, and T. Takeuchi, Anal. Sci., 2008, 24, 1487.

    Article  CAS  PubMed  Google Scholar 

  5. N. Cardellicchio, S. Cavalli, P. Ragone, and J. M. Riviello, J. Chromatogr A, 1999, 847, 251.

    Article  CAS  Google Scholar 

  6. B. Divjak, M. Franko, and M. NoviC, J. Chromatogr. A, 1998, 829, 167.

    Article  Google Scholar 

  7. M. Sikovec, M. NoviC, and M. Franko, J. Chromatogr. A, 1996, 739, 111.

    Article  CAS  Google Scholar 

  8. P. Steinmann and W. Shotyk, J. Chromatogr. A, 1995, 706, 293.

    Article  CAS  Google Scholar 

  9. M. M. Wolle, T. Fahrenholz, G. M. M. Rahman, M. Pamuku, H. M. S. Kingston, and D. Browne, J. Chromatogr. A, 2014, 1347, 96.

    Article  CAS  PubMed  Google Scholar 

  10. L. Kozak, P. Niedzielski, and W. Wachowiak, Microchem. J., 2013, 110, 54.

    Article  CAS  Google Scholar 

  11. C. X. Galhardo and J. C. Masini, Anal. Chim. Acta, 2001, 438, 39.

    Article  CAS  Google Scholar 

  12. A. C. L. da Conceiçao, M. T. Tena, M. M. C. dos Santos, M. L. S. Gonçalves, and M. D. L. de Castro, Anal. Chim. Acta, 1997, 343, 191.

    Article  Google Scholar 

  13. C. Pons, R. Forteza, and V. Cerdà, Anal. Chim. Acta, 2005, 550, 33.

    Article  CAS  Google Scholar 

  14. C. Pons, R. Forteza, and V. Cerdà, Anal. Chim. Acta, 2004, 524, 79.

    Article  CAS  Google Scholar 

  15. M. Noroozifar, M. Khorasani-Motlagh, and R. Akbari, Anal. Sci., 2006, 22, 141.

    Article  CAS  PubMed  Google Scholar 

  16. M. Yaman and G. Kaya, Anal. Chim. Acta, 2005, 540, 77.

    Article  CAS  Google Scholar 

  17. M. M. Abualhaija and C. M. G. van den Berg, Mar. Chem., 2014, 164, 60.

    Article  CAS  Google Scholar 

  18. C. S. Hassler, F.-E. Legiret, and E. C. V. Butler, Mar. Chem., 2013, 149, 63.

    Article  CAS  Google Scholar 

  19. M. Cheize, G. Sarthou, P. L. Croot, E. Bucciarelli, A.-C. Baudoux, and A. R. Baker, Anal. Chim. Acta, 2012, 736, 45.

    Article  CAS  PubMed  Google Scholar 

  20. M. Shamsipur, M. Sadeghi, A. Garau, and V. Lippolis, Anal. Chim. Acta, 2013, 761, 169.

    Article  CAS  PubMed  Google Scholar 

  21. American Public Health Association, American Water Works Association, Water Environment Federation, “Standard Methods for the Examination of Water and Wastewater”, 1999.

    Google Scholar 

  22. P. Worsfold, M. Lohan, S. Ussher, and A. Bowie, Mar. Chem., 2014, 166, 25.

    Article  CAS  Google Scholar 

  23. S. Armenta, S. Garrigues, and M. de la Guardia, TrAC, Trends Anal. Chem., 2008, 27, 497.

    Article  CAS  Google Scholar 

  24. M. de la Guardia, TrAC, Trends Anal. Chem., 2010, 29, 577.

    Article  Google Scholar 

  25. D. R. Reyes, D. Lossifidis, P.-A. Auroux, and A. Manz, Anal. Chem., 2002, 74, 2623.

    Article  CAS  PubMed  Google Scholar 

  26. P.-A. Auroux, D. Lossifidis, D. R. Reyes, and A. Manz, Anal. Chem., 2002, 74, 2637.

    Article  CAS  PubMed  Google Scholar 

  27. M. Mirasoli, M. Guardigli, E. Michelini, and A. Roda, J. Pharm. Biomed. Anal., 2014, 87, 36.

    Article  CAS  PubMed  Google Scholar 

  28. W. Jung, J. Han, J.-W. Choi, and C. H. Ahn, Microelectron. Eng., in press, uncorrected proof.

  29. P. Liu, S. H. I. Yeung, K. A. Crenshaw, C. A. Crouse, J. R. Scherer, and R. A. Mathies, Forensic Sci. Int.: Genet., 2008, 2, 301.

    Article  PubMed  Google Scholar 

  30. T. Leelasattarathkul, S. Liawruangrath, M. Rayanakorn, B. Liawruangrath, W. Oungpipat, and N. Youngvises, Talanta, 2007, 72, 126.

    Article  CAS  PubMed  Google Scholar 

  31. S. Kruanetr, S. Liawruangrath, and N. Youngvises, Talanta, 2007, 73, 46.

    Article  CAS  PubMed  Google Scholar 

  32. N. Laitip, N. Chomnawang, N. Youngvises, and W. Threeprom, Asian J. Chem., 2013, 25, 6486.

    Article  CAS  Google Scholar 

  33. M. Kamruzzaman, A.-M. Alam, K. M. Kim, S. H. Lee, Y. H. Kim, G.-M. Kim, and T. D. Dang, Food Chem., 2012, 135, 57.

    Article  CAS  Google Scholar 

  34. C.-L. Lin, W.-H. Chang, C.-H. Wang, C.-H. Lee, T.-Y. Chen, F.-J. Jan, and G.-B. Lee, Biosens. Bioelectron., 2015, 63, 572.

    Article  CAS  PubMed  Google Scholar 

  35. A. AlSuhaimi, G. Greenway, T. McCreedy, and N. Youngvises, Spectrosc. Lett., 2009, 42, 370.

    Article  CAS  Google Scholar 

  36. S.-A. Supharoek, N. Youngvises, and J. Jakmunee, Anal. Sci., 2012, 28, 651.

    Article  CAS  PubMed  Google Scholar 

  37. S. Koronkiewicz and S. Kalinowski, Talanta, 2012, 96, 68.

    Article  CAS  PubMed  Google Scholar 

  38. C. Pons, R. Forteza, and V. Cerdà, Anal. Chim. Acta, 2005, 528, 197.

    Article  CAS  Google Scholar 

  39. C. Pons, R. Forteza, and V. Cerdà, Talanta, 2005, 66, 210.

    Article  CAS  PubMed  Google Scholar 

  40. C. Pons, M. MirO, E. Becerra, J. M. Estela, and V. Cerdà, Talanta, 2004, 62, 887.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Thailand Research Funds (MRG 5380237), Thammasat University and Office of the Higher Education Commission (under the Higher Education Research Promotion, the National Research University Project of Thailand). The authors would like to acknowledge the Department of Chemistry at Thammasat University for facility and laboratory support throughout this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Napaporn Youngvises or Awadh Alsuhaimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youngvises, N., Thanurak, P., Chaida, T. et al. Double-sided Microfluidic Device for Speciation Analysis of Iron in Water Samples: Towards Greener Analytical Chemistry. ANAL. SCI. 31, 365–370 (2015). https://doi.org/10.2116/analsci.31.365

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.31.365

Keywords

Navigation