Skip to main content
Log in

Determination of Iron Ion in the Water of a Natural Hot Spring Using Microfluidic Paper-based Analytical Devices

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Microfluidic paper-based analytical devices (μPADs) were used to detect the iron ion content in the water of a natural hot spring in order to assess the applicability of this process to the environmental analysis of natural water. The μPADs were fabricated using a wax printer after the addition of hydroxylamine into the detection reservoirs to reduce Fe3+ to Fe2+, 1,10-phenanthroline for the forming of a complex, and poly(acrylic acid) for ion-pair formation with an acetate buffer (pH 4.7). The calibration curve of Fe3+ showed a linearity that ranged from 100 to 1000 ppm in the semi-log plot whereas the color intensity was proportional to the concentration of Fe3+ and ranged from 40 to 350 ppm. The calibration curve represented the daily fluctuation in successive experiments during four days, which indicated that a calibration curve must be constructed for each day. When freshly prepared μPADs were compared with stored ones, no significant difference was found. The μPADs were applied to the determination of Fe3+ in a sample of water from a natural hot spring. Both the accuracy and the precision of the μPAD method were evaluated by comparisons with the results obtained via conventional spectrophotometry. The results of the μPADs were in good agreement with, but less precise than, those obtained via conventional spectrophotometry. Consequently, the μPADs offer advantages that include rapid and miniaturized operation, although the precision was poorer than that of conventional spectrophotometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. C. Nagajyoti, K. D. Lee, and T. V. M. Sreekanth, Environ. Chem. Lett., 2010, 8, 199.

    Article  CAS  Google Scholar 

  2. M. I. Castro-Gonzalez and M. Mendez-Armenta, Environ. Toxicol. Pharmacol., 2008, 26, 263.

    Article  CAS  PubMed  Google Scholar 

  3. G.-C. Fang, Y.-S. Wu, S.-H. Huang, and J.-Y. Rau, Atmos. Environ., 2005, 39, 3003.

    Article  CAS  Google Scholar 

  4. A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides, Angew. Chem., Int. Ed., 2007, 46, 1318.

    Article  CAS  Google Scholar 

  5. D. D. Liana, B. Raguse, J. J. Gooding, and E. Chow, Sensors, 2012, 12, 11505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. A. K. Yetisen, M. S. Akram, and C. R. Lowe, Lab Chip, 2013, 13, 2210.

    Article  CAS  PubMed  Google Scholar 

  7. D. M. Cate, J. A. Adkins, J. Mettakoonpitak, and C. S. Henry, Anal. Chem., 2015, 87, 19.

    Article  CAS  PubMed  Google Scholar 

  8. A. W. Martinez, S. T. Phillips, G. M. Whitesides, and E. Carrilho, Anal. Chem., 2010, 82, 3.

    Article  CAS  PubMed  Google Scholar 

  9. H. Noh and S. T. Phillips, Anal. Chem., 2010, 82, 8071.

    Article  CAS  PubMed  Google Scholar 

  10. S. Li, J. A. Hagen, and I. Papautsky, Lab Chip, 2012, 12, 4240.

    Article  Google Scholar 

  11. K. M. Schilling, D. Jauregui, and A. W. Martinez, Lab Chip, 2013, 13, 628.

    Article  CAS  PubMed  Google Scholar 

  12. G. G. Lewis, J. S. Robbins, and S. T. Phillips, Anal. Chem., 2013, 85, 10432.

    Article  CAS  PubMed  Google Scholar 

  13. J. I. Hong and B.-Y. Chang, Lab Chip, 2014, 14, 1725.

    Article  CAS  PubMed  Google Scholar 

  14. R. Gerbers, W. Foellscher, H. Chen, C. Anagnostopoulos, and M. Faghri, Lab Chip, 2014, 14, 4042.

    Article  CAS  PubMed  Google Scholar 

  15. K. Yamada, S. Takaki, N. Komuro, K. Suzuki, and D. Citterio, Analyst, 2014, 139, 1637.

    Article  CAS  PubMed  Google Scholar 

  16. M. M. Mentele, J. Cunningham, K. Koehler, J. Volckens, and C. S. Henry, Anal. Chem., 2012, 84, 4474.

    Article  CAS  PubMed  Google Scholar 

  17. P. Rattanarat, W. Dungchai, D. M. Cate, W. Siangproh, J. Volckense, O. Chailapakul, and C. S. Henry, Anal. Chim. Acta, 2013, 800, 50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. J.-Y. Sun, C.-M. Cheng, and Y.-C. Liao, Anal. Sci., 2015, 31, 145.

    Article  CAS  PubMed  Google Scholar 

  19. D. M. Cate, P. Nanthasurasak, P. Riwkulkajorn, C. L’Orange, C.S. Henry, and J. Volckens, Ann. Occup. Hyg., 2014, 58, 413.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Y. Sameenoi, P. Panymeesamer, N. Supalakorn, K. Koehler, O. Chailapakul, C. S. Henry, and J. Volckens, Environ. Sci. Technol., 2013, 47, 932.

    Article  CAS  PubMed  Google Scholar 

  21. S. Karita and T. Kaneta, Anal. Chem, 2014, 86, 12108.

    Article  CAS  PubMed  Google Scholar 

  22. E. Carrilho, A. W. Martinez, and G. M. Whitesides, Anal. Chem., 2009, 81, 7091.

    Article  CAS  PubMed  Google Scholar 

  23. H. Asano and Y. Shiraishi, Anal. Chim. Acta, 2015, 883, 55.

    Article  CAS  PubMed  Google Scholar 

  24. G. Andregg, Helv. Chim. Acta, 1963, 46, 2813.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by The Yakumo Foundation for Environmental Science and Grants-in-Aid for Scientific Research, Scientific Research (B) (No. 26288067) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kaneta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogawa, K., Kaneta, T. Determination of Iron Ion in the Water of a Natural Hot Spring Using Microfluidic Paper-based Analytical Devices. ANAL. SCI. 32, 31–34 (2016). https://doi.org/10.2116/analsci.32.31

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.32.31

Keywords

Navigation