Skip to main content
Log in

Evaluation of Enzymatic Activities in Living Systems with Small-molecular Fluorescent Substrate Probes

  • Reviews
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

In this review, we aim to present an overview of how small-molecular fluorescent substrate probes for studying enzymatic functions are developed and how they are used in biological applications, under the following four headings: (1) History of Visual Detection of Enzymatic Activities, (2) Strategies to Design Fluorescent Substrate Probes to Measure Enzymatic Activities, (3) Development of Fluorescent Substrate Probes Suitable for Biological Studies, and (4) Biological Applications of Fluorescent Substrate Probes for Studying Enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Venter, M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G. Sutton, H. O. Smith, M. Yandell, C. A. Evans, R. A. Holt, J. D. Gocayne, P. Amanatides, R. M. Ballew, D. H. Huson, J. R. Wortman, Q. Zhang, C. D. Kodira, X. H. Zheng, L. Chen, M. Skupski, G. Subramanian, P. D. Thomas, J. Zhang, G. L. Gabor Miklos, C. Nelson, S. Broder, A. G. Clark, J. Nadeau, V. A. McKusick, N. Zinder, A. J. Levine, R. J. Roberts, M. Simon, C. Slayman, M. Hunkapiller, R. Bolanos, A. Delcher, I. Dew, D. Fasulo, M. Flanigan, L. Florea, A. Halpern, S. Hannenhalli, S. Kravitz, S. Levy, C. Mobarry, K. Reinert, K. Remington, J. Abu-Threideh, E. Beasley, K. Biddick, V. Bonazzi, R. Brandon, M. Cargill, I. Chandramouliswaran, R. Charlab, K. Chaturvedi, Z. Deng, V. Di Francesco, P. Dunn, K. Eilbeck, C. Evangelista, A. E. Gabrielian, W. Gan, W. Ge, F. Gong, Z. Gu, P. Guan, T. J. Heiman, M. E. Higgins, R. R. Ji, Z. Ke, K. A. Ketchum, Z. Lai, Y. Lei, Z. Li, J. Li, Y. Liang, X. Lin, F. Lu, G. V. Merkulov, N. Milshina, H. M. Moore, A. K. Naik, V. A. Narayan, B. Neelam, D. Nusskern, D. B. Rusch, S. Salzberg, W. Shao, B. Shue, J. Sun, Z. Wang, A. Wang, X. Wang, J. Wang, M. Wei, R. Wides, C. Xiao, C. Yan, A. Yao, J. Ye, M. Zhan, W. Zhang, H. Zhang, Q. Zhao, L. Zheng, F. Zhong, W. Zhong, S. C. Zhu, S. Zhao, D. Gilbert, S. Baumhueter, G. Spier, C. Carter, A. Cravchik, T. Woodage, F. Ali, H. An, A. Awe, D. Baldwin, H. Baden, M. Barnstead, I. Barrow, K. Beeson, D. Busam, A. Carver, A. Center, M. L. Cheng, L. Curry, S. Danaher, L. Davenport, R. Desilets, S. Dietz, K. Dodson, L. Doup, S. Ferriera, N. Garg, A. Gluecksmann, B. Hart, J. Haynes, C. Haynes, C. Heiner, S. Hladun, D. Hostin, J. Houck, T. Howland, C. Ibegwam, J. Johnson, F. Kalush, L. Kline, S. Koduru, A. Love, F. Mann, D. May, S. McCawley, T. McIntosh, I. McMullen, M. Moy, L. Moy, B. Murphy, K. Nelson, C. Pfannkoch, E. Pratts, V. Puri, H. Qureshi, M. Reardon, R. Rodriguez, Y.-H. Rogers, D. Romblad, B. Ruhfel, R. Scott, C. Sitter, M. Smallwood, E. Stewart, R. Strong, E. Suh, R. Thomas, N. N. Tint, S. Tse, C. Vech, G. Wang, J. Wetter, S. Williams, M. Williams, S. Windsor, E. Winn-Deen, K. Wolfe, J. Zaveri, K. Zaveri, J. F. Abril, R. Guigo, M. J. Campbell, K. V. Sjolander, B. Karlak, A. Kejariwal, H. Mi, B. Lazareva, T. Hatton, A. Narechania, K. Diemer, A. Muruganujan, N. Guo, S. Sato, V. Bafna, S. Istrail, R. Lippert, R. Schwartz, B. Walenz, S. Yooseph, D. Allen, A. Basu, J. Baxendale, L. Blick, M. Caminha, J. Carnes-Stine, P. Caulk, Y.-H. Chiang, M. Coyne, C. Dahlke, A. D. Mays, M. Dombroski, M. Donnelly, D. Ely, S. Esparham, C. Fosler, H. Gire, S. Glanowski, K. Glasser, A. Glodek, M. Gorokhov, K. Graham, B. Gropman, M. Harris, J. Heil, S. Henderson, J. Hoover, D. Jennings, C. Jordan, J. Jordan, J. Kasha, L. Kagan, C. Kraft, A. Levitsky, M. Lewis, X. Liu, J. Lopez, D. Ma, W. Majoros, J. McDaniel, S. Murphy, M. Newman, T. Nguyen, N. Nguyen, M. Nodell, S. Pan, J. Peck, M. Peterson, W. Rowe, R. Sanders, J. Scott, M. Simpson, T. Smith, A. Sprague, T. Stockwell, R. Turner, E. Venter, M. Wang, M. Wen, D. Wu, M. Wu, A. Xia, A. Zandieh, and X. Zhu, Science, 2001, 297, 1304.

    Article  Google Scholar 

  2. A. L. Hopkins and C. R. Groom, Nat. Rev. Drug Discovery, 2002, 7, 727.

    Article  Google Scholar 

  3. H. Kubinyi, Nat. Rev. Drug Discovery, 2003, 2, 665.

    Article  CAS  PubMed  Google Scholar 

  4. (a) A. Saghatelian and B. F. Cravatt, Nat. Chem. Biol., 2005, 7, 130; (b) B. N. Giepmans, S. R. Adams, M. H. Ellisman, and R. Y. Tsien, Science, 2006, 372, 217; (c) B. N. Kholodenko, Nat. Rev. Mol. Cell Biol., 2006, 7, 165.

    Article  Google Scholar 

  5. (a) Y. L. Deribe, T. Pawson, and I. Dikic, Nat. Struct. Mol. Biol., 2010, 77, 666; (b) M. D. Hoffman, M. J. Sniatynski, and J. Kast, Anal. Chim. Acta, 2008, 627, 50.

    Article  Google Scholar 

  6. (a) B. Schwikowski, P. Uetz, and S. Fields, Nat. Biotechnol., 2000, 78, 1257; (b) M. R. Arkin and J. A. Wells, Nat. Rev. Drug Discovery, 2004, 3, 301.

    Article  Google Scholar 

  7. B. Turk, Nat. Rev. Drug Discovery, 2006, 5, 785.

    Article  CAS  PubMed  Google Scholar 

  8. (a) R. P. Haugland, M. T. Z. Spence, I. D. Johnson, and A. Basey, “The handbook: a guide to fluorescent probes and labeling technologies”, 10th ed., 2005, Molecular Probes, Eugene, OR; (b) D. K. Nomura, M. M. Dix, and B. F. Cravatt, Nat. Rev. Cancer, 2010, 70, 630; (c) B. J. Backes, J. L. Harris, F. Leonetti, C. S. Craik, and J. A. Ellman, Nat. Biotechnol., 2000, 78, 187; (d) D. S. Lawrence, Acc. Chem. Res., 2003, 36, 401; (e) L. E. Edgington, M. Verdoes, and M. Bogyo, Curr. Opin. Chem. Biol., 2011, 75, 798; (f) N. Johnsson and K. Johnsson, ACS Chem. Biol., 2007, 2, 31; (g) T. Ueno and T. Nagano, Nat. Methods, 2011, 8, 642; (h) R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov, Jr., Nat. Biotechnol., 1999, 77, 375.

    Google Scholar 

  9. (a) J. Zhang, R. E. Campbell, A. Y. Ting, and R. Y. Tsien, Nat. Rev. Mol. Cell Biol., 2002, 3, 906; (b) D. M. Chudakov, S. Lukyanov, and K. A. Lukyanov, Trends Biotechnol., 2005, 23, 605.

    Article  CAS  PubMed  Google Scholar 

  10. G. Gomoki, Proc. Soc. Exp. Biol. Med., 1939, 42, 23.

    Article  Google Scholar 

  11. (a) M. L. Menten, J. Junge, and M. H. Green, J. Biol. Chem., 1944, 753, 471; (b) A. M. Seligman and G. Wolf, J. Am. Chem. Soc., 1951, 73, 2086; (c) J. P. Horwitz, J. Chua, R. J. Curby, A. J. Tomson, M. A. Darooge, B. E. Fisher, J. Mauricio, and I. Klundt, J. Med. Chem., 1964, 7, 574.

    Article  Google Scholar 

  12. (a) D. M. Campbell and D. W. Moss, Clin. Chim. Acta, 1961, 6, 307; (b) W. R. Sherman and E. Robins, Anal. Chem., 1968, 40, 803; (c) B. Rotman, Proc. Natl. Acad. Sci. U. S. A., 1961, 47, 1981.

    Article  CAS  PubMed  Google Scholar 

  13. M. A. Naughton and F. Sanger, Biochem. J., 1961, 78, 156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. V. K. Hopsu-Havu and G. G. Glenner, Histochemie, 1966, 7, 197.

    Article  CAS  PubMed  Google Scholar 

  15. (a) K. M. Fukasawa, K. Fukasawa, B. Y. Hiraoka, and M. Harada, Biochim. Biophys. Acta, 1981, 657, 179; (b) G. Puschel, R. Mentlein, and E. Heymann, Eur. J. Biochem., 1982, 726, 359.

    Article  CAS  PubMed  Google Scholar 

  16. R. Mentlein, B. Gallwitz, and W. E. Schmidt, Eur. J. Biochem., 1993, 274, 829.

    Article  Google Scholar 

  17. (a) D. Drucker, C. Easley, and P. Kirkpatrick, Nat. Rev. Drug Discovery, 2007, 6, 109; (b) D. A. Bachovchin and B. F. Cravatt, Nat. Rev. Drug Discovery, 2012, 77, 52; (c) D. M. Tagore, W. M. Nolte, J. M. Neveu, R. Rangel, L. Guzman-Rojas, R. Pasqualini, W. Arap, W. S. Lane, and A. Saghatelian, Nat. Chem. Biol., 2009, 5, 23.

    Article  CAS  PubMed  Google Scholar 

  18. G. Zlokarnik, P. A. Negulescu, T. E. Knapp, L. Mere, N. Burres, L. Feng, M. Whitney, K. Roemer, and R. Y. Tsien, Science, 1998, 279, 84.

    Article  CAS  PubMed  Google Scholar 

  19. International Union of Biochemistry and Molecular Biology, Nomenclature Committee, E. C. Webb, “Enzyme nomenclature 7992: recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the nomenclature and classification of enzymes”, 1992, Published for the International Union of Biochemistry and Molecular Biology by Academic Press, San Diego.

    Google Scholar 

  20. M. L. Reboud Ravaux, “Protein degradation in health and disease”, 2002, Springer, Berlin, New York.

    Book  Google Scholar 

  21. B. Rotman, J. A. Zderic, and M. Edelstein, Proc. Natl. Acad. Sci. U. S. A., 1963, 50, 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. (a) J. L. Harris, B. J. Backes, F. Leonetti, S. Mahrus, J. A. Ellman, and C. S. Craik, Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 7754; (b) J. L. Harris, A. Niles, K. Burdick, M. Maffitt, B. J. Backes, J. A. Ellman, I. Kuntz, M. Haak-Frendscho, and C. S. Craik, J. Biol. Chem., 2001, 276, 34941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. (a) J. Alam and J. L. Cook, Anal. Biochem., 1990, 188, 245; (b) Y. Urano, M. Kamiya, K. Kanda, T. Ueno, K. Hirose, and T. Nagano, J. Am. Chem. Soc., 2005, 127, 4888.

    Article  CAS  PubMed  Google Scholar 

  24. C. Huggins and D. R. Smith, J. Biol. Chem., 1947, 170, 391.

    Article  CAS  Google Scholar 

  25. V. K. Jain and I. T. Magrath, Anal. Biochem., 1991, 199, 119.

    Article  CAS  PubMed  Google Scholar 

  26. T. S. Wehrman, G. von Degenfeld, P. O. Krutzik, G. P. Nolan, and H. M. Blau, Nat. Methods, 2006, 3, 295.

    Article  CAS  PubMed  Google Scholar 

  27. (a) A. Y. Louie, M. M. Huber, E. T. Ahrens, U. Rothbacher, R. Moats, R. E. Jacobs, S. E. Fraser, and T. J. Meade, Nat. Biotechnol., 2000, 18, 321; (b) K. Hanaoka, K. Kikuchi, T. Terai, T. Komatsu, and T. Nagano, Chem. Eur. J., 2008, 14, 987.

    Article  CAS  PubMed  Google Scholar 

  28. M. Kamiya, H. Kobayashi, Y. Hama, Y. Koyama, M. Bernardo, T. Nagano, P. L. Choyke, and Y. Urano, J. Am. Chem. Soc., 2007, 129, 3918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. (a) S. Halazy, C. Danzin, A. Ehrhard, and F. Gerhart, J. Am. Chem. Soc., 1989, 111, 3484; (b) T. Komatsu, K. Kikuchi, H. Takakusa, K. Hanaoka, T. Ueno, M. Kamiya, Y. Urano, and T. Nagano, J. Am. Chem. Soc., 2006, 128, 15946.

    Article  CAS  Google Scholar 

  30. (a) J. Hofmann and M. Sernetz, Anal. Chim. Acta, 1984, 163, 67; (b) T. Egawa, Y. Koide, K. Hanaoka, T. Komatsu, T. Terai, and T. Nagano, Chem. Commun., 2011, 47, 4162.

    Article  CAS  Google Scholar 

  31. (a) S. Mizukami, K. Kikuchi, T. Higuchi, Y. Urano, T. Mashima, T. Tsuruo, and T. Nagano, FEBS Lett., 1999, 453, 356; (b) H. Takakusa, K. Kikuchi, Y. Urano, S. Sakamoto, K. Yamaguchi, and T. Nagano, J. Am. Chem. Soc., 2002, 124, 1653; (c) H. Takakusa, K. Kikuchi, Y. Urano, H. Kojima, and T. Nagano, Chem. Eur. J., 2003, 9, 1479; (d) G. Blum, S. R. Mullins, K. Keren, M. Fonovic, C. Jedeszko, M. J. Rice, B. F. Sloane, and M. Bogyo, Nat. Chem. Biol., 2005, 1, 203.

    Article  CAS  PubMed  Google Scholar 

  32. D. J. Yee, V. Balsanek, D. R. Bauman, T. M. Penning, and D. Sames, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 13304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. (a) T. Terai, K. Kikuchi, S. Y. Iwasawa, T. Kawabe, Y. Hirata, Y. Urano, and T. Nagano, J. Am. Chem. Soc., 2006, 128, 6938; (b) Y. Fujikawa, Y. Urano, T. Komatsu, K. Hanaoka, H. Kojima, T. Terai, H. Inoue, and T. Nagano, J. Am. Chem. Soc., 2008, 130, 14533.

    Article  CAS  PubMed  Google Scholar 

  34. (a) Y. Urano, M. Sakabe, N. Kosaka, M. Ogawa, M. Mitsunaga, D. Asanuma, M. Kamiya, M. R. Young, T. Nagano, P. L. Choyke, and H. Kobayashi, Sci. Trans. Med., 2011, 3, 110ra119; (b) M. Kamiya, D. Asanuma, E. Kuranaga, A. Takeishi, M. Sakabe, M. Miura, T. Nagano, and Y. Urano, J. Am. Chem. Soc., 2011, 133, 12960; (c) M. Sakabe, D. Asanuma, M. Kamiya, R. J. Iwatate, K. Hanaoka, T. Terai, T. Nagano, and Y. Urano, J. Am. Chem. Soc., 2013, 135, 409.

    Article  Google Scholar 

  35. E. Gounaris, C. H. Tung, C. Restaino, R. Maehr, R. Kohler, J. A. Joyce, H. L. Ploegh, T. A. Barrett, R. Weissleder, and K. Khazaie, PLoS One, 2008, 3, e2916.

    Article  PubMed  PubMed Central  Google Scholar 

  36. D. Oushiki, H. Kojima, Y. Takahashi, T. Komatsu, T. Terai, K. Hanaoka, M. Nishikawa, Y. Takakura, and T. Nagano, Anal. Chem., 2012, 84, 4404.

    Article  CAS  PubMed  Google Scholar 

  37. (a) R. J. Jones, J. P. Barber, M. S. Vala, M. I. Collector, S. H. Kaufmann, S. M. Ludeman, O. M. Colvin, and J. Hilton, Blood, 1995, 85, 2742; (b) R. W. Storms, A. P. Trujillo, J. B. Springer, L. Shah, O. M. Colvin, S. M. Ludeman, and C. Smith, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 9118.

    Article  CAS  PubMed  Google Scholar 

  38. H. Shi, R. T. Kwok, J. Liu, B. Xing, B. Z. Tang, and B. Liu, J. Am. Chem. Soc., 2012, 134, 17972.

    Article  CAS  PubMed  Google Scholar 

  39. G. M. Simon and B. F. Cravatt, Nat. Chem. Biol., 2008, 4, 639.

    Article  CAS  PubMed  Google Scholar 

  40. (a) G. M. Simon and B. F. Cravatt, J. Biol. Chem., 2010, 285, 11051; (b) A. Saghatelian, N. Jessani, A. Joseph, M. Humphrey, and B. F. Cravatt, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 10000; (c) S. A. Sieber, S. Niessen, H. S. Hoover, and B. F. Cravatt, Nat. Chem. Biol., 2006, 2, 274; (d) S. Kumar, B. Zhou, F. Liang, W. Q. Wang, Z. Huang, and Z. Y. Zhang, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 7943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. M. Drag, M. Bogyo, J. A. Ellman, and G. S. Salvesen, J. Biol. Chem., 2010, 285, 3310.

    Article  CAS  PubMed  Google Scholar 

  42. (a) M. K. Froemming and D. Sames, J. Am. Chem. Soc., 2007, 129, 14518; (b) P. C. Rodriguez, D. J. Yee, and D. Sames, ACS Chem. Biol., 2010, 5, 1045.

    Article  CAS  PubMed  Google Scholar 

  43. M. Whitney, J. L. Crisp, E. S. Olson, T. A. Aguilera, L. A. Gross, L. G. Ellies, and R. Y. Tsien, J. Biol. Chem., 2010, 285, 22532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. M. Kawaguchi, T. Okabe, S. Okudaira, K. Hanaoka, Y. Fujikawa, T. Terai, T. Komatsu, H. Kojima, J. Aoki, and T. Nagano, J. Am. Chem. Soc., 2011, 133, 12021.

    Article  CAS  PubMed  Google Scholar 

  45. (a) M. Bollen, R. Gijsbers, H. Ceulemans, W. Stalmans, and C. Stefan, Crit. Rev. Biochem. Mol. Biol., 2000, 35, 393; (b) J. W. Goding, B. Grobben, and H. Slegers, Biochim. Biophys. Acta, 2003, 1638, 1.

    Article  CAS  PubMed  Google Scholar 

  46. H. Sakagami, J. Aoki, Y. Natori, K. Nishikawa, Y. Kakehi, and H. Arai, J. Biol. Chem., 2005, 280, 23084.

    Article  CAS  PubMed  Google Scholar 

  47. (a) J. W. Chang, R. E. Moellering, and B. F. Cravatt, Angew. Chem., Int. Ed. Engl., 2012, 51, 966; (b) A. Watzke, G. Kosec, M. Kindermann, V. Jeske, H. P. Nestler, V. Turk, B. Turk, and K. U. Wendt, Angew. Chem., Int. Ed. Engl., 2008, 47, 406; (c) J. A. Blair, D. Rauh, C. Kung, C. H. Yun, Q. W. Fan, H. Rode, C. Zhang, M. J. Eck, W. A. Weiss, and K. M. Shokat, Nat. Chem. Biol., 2007, 3, 229.

    Article  CAS  PubMed  Google Scholar 

  48. (a) G. P. Manchenko, “Handbook of detection of enzymes on electrophoretic gels”, 2nd ed., 2003, CRC Press, Boca Raton; (b) Y. Shimazaki, Y. Sugawara and T. Manabe, Proteomics, 2004, 4, 1406; (c) M. S. Lantz and P. Ciborowski, Methods Enzymol., 1994, 235, 563.

    Google Scholar 

  49. Y. Shimazaki, M. Muro, and T. Manabe, Clin. Chim. Acta, 2000, 302, 221.

    Article  CAS  PubMed  Google Scholar 

  50. G. Lomolino, A. Lante, A. Crapisi, P. Spettoli, and A. Curioni, Electrophoresis, 2001, 22, 1021.

    Article  CAS  PubMed  Google Scholar 

  51. T. Komatsu, K. Hanaoka, A. Adibekian, K. Yoshioka, T. Terai, T. Ueno, M. Kawaguchi, B. F. Cravatt, and T. Nagano, J. Am. Chem. Soc., 2013, 135, 6002.

    Article  CAS  PubMed  Google Scholar 

  52. G. Chen, D. J. Yee, N. G. Gubernator, and D. Sames, J. Am. Chem. Soc., 2005, 127, 4544.

    Article  CAS  PubMed  Google Scholar 

  53. T. U. Mayer, T. M. Kapoor, S. J. Haggarty, R. W. King, S. L. Schreiber, and T. J. Mitchison, Science, 1999, 286, 971.

    Article  CAS  PubMed  Google Scholar 

  54. S. Goto, Y. Ihara, Y. Urata, S. Izumi, K. Abe, T. Koji, and T. Kondo, FASEB J., 2001, 15, 2702.

    Article  CAS  PubMed  Google Scholar 

  55. K. Kamada, S. Goto, T. Okunaga, Y. Ihara, K. Tsuji, Y. Kawai, K. Uchida, T. Osawa, T. Matsuo, I. Nagata, and T. Kondo, Free Radical Biol. Med., 2004, 37, 1875.

    Article  CAS  Google Scholar 

  56. (a) J. P. Chute, G. G. Muramoto, J. Whitesides, M. Colvin, R. Safi, N. J. Chao, and D. P. McDonnell, Proc. Natl. Acad. Sci. U. S. A., 2006, 703, 11707; (b) S. Corti, F. Locatelli, D. Papadimitriou, C. Donadoni, S. Salani, R. Del Bo, S. Strazzer, N. Bresolin, and G. P. Comi, Stem Cells, 2006, 24, 975.

    Article  Google Scholar 

  57. (a) R. Macarron, M. N. Banks, D. Bojanic, D. J. Burns, D. A. Cirovic, T. Garyantes, D. V. Green, R. P. Hertzberg, W. P. Janzen, J. W. Paslay, U. Schopfer, and G. S. Sittampalam, Nat. Rev. Drug Discovery, 2011, 70, 188; (b) J. Kaiser, Science, 2008, 327, 764.

    Article  Google Scholar 

  58. S. Frye, M. Crosby, T. Edwards, and R. Juliano, Nat. Rev. Drug Discovery, 2011, 70, 409.

    Article  Google Scholar 

  59. (a) R. L. Strausberg and S. L. Schreiber, Science, 2003, 300, 294; (b) B. R. Stockwell, Nat. Rev. Genet., 2000, 7, 116; (c) S. L. Schreiber, Nat. Chem. Biol., 2005, 7, 64.

    Article  CAS  PubMed  Google Scholar 

  60. M. Kawaguchi, T. Okabe, T. Terai, K. Hanaoka, H. Kojima, I. Minegishi, and T. Nagano, Chem. Eur. J., 2010, 76, 13479.

    Article  Google Scholar 

  61. J. Z. Long, W. Li, L. Booker, J. J. Burston, S. G. Kinsey, J. E. Schlosburg, F. J. Pavon, A. M. Serrano, D. E. Selley, L. H. Parsons, A. H. Lichtman, and B. F. Cravatt, Nat. Chem. Biol., 2009, 5, 37.

    Article  CAS  PubMed  Google Scholar 

  62. J. E. Schlosburg, J. L. Blankman, J. Z. Long, D. K. Nomura, B. Pan, S. G. Kinsey, P. T. Nguyen, D. Ramesh, L. Booker, J. J. Burston, E. A. Thomas, D. E. Selley, L. J. Sim-Selley, Q. S. Liu, A. H. Lichtman, and B. F. Cravatt, Nat. Neurosci., 2010, 73, 1113.

    Article  Google Scholar 

  63. D. K. Nomura, J. Z. Long, S. Niessen, H. S. Hoover, S. W. Ng, and B. F. Cravatt, Cell, 2010, 740, 49.

    Article  Google Scholar 

  64. D. K. Nomura, B. E. Morrison, J. L. Blankman, J. Z. Long, S. G. Kinsey, M. C. Marcondes, A. M. Ward, Y. K. Hahn, A. H. Lichtman, B. Conti, and B. F. Cravatt, Science, 2011, 334, 809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. (a) S. X. Cai, J. Drewe, and S. Kasibhatla, Curr. Med. Chem., 2006, 73, 2627; (b) S. X. Cai, B. Nguyen, S. Jia, J. Herich, J. Guastella, S. Reddy, B. Tseng, J. Drewe, and S. Kasibhatla, J. Med. Chem., 2003, 46, 2474.

    Google Scholar 

  66. H. Z. Zhang, J. Drewe, B. Tseng, S. Kasibhatla, and S. X. Cai, Bioorg. Med. Chem., 2004, 72, 3649.

    Article  Google Scholar 

  67. S. Kasibhatla, K. A. Jessen, S. Maliartchouk, J. Y. Wang, N. M. English, J. Drewe, L. Qiu, S. P. Archer, A. E. Ponce, N. Sirisoma, S. Jiang, H. Z. Zhang, K. R. Gehlsen, S. X. Cai, D. R. Green, and B. Tseng, Proc. Natl. Acad. Sci. U. S. A., 2005, 702, 12095.

    Article  Google Scholar 

  68. K. A. Jessen, N. M. English, J. Yu Wang, S. Maliartchouk, S. P. Archer, L. Qiu, R. Brand, J. Kuemmerle, H. Z. Zhang, K. Gehlsen, J. Drewe, B. Tseng, S. X. Cai, and S. Kasibhatla, Mol. Cancer Ther., 2005, 4, 761.

    Article  CAS  PubMed  Google Scholar 

  69. G. Szasz, Am. J. Clin. Pathol., 1967, 47, 607.

    Article  CAS  PubMed  Google Scholar 

  70. C. Bremer, C. H. Tung, and R. Weissleder, Nat. Med., 2001, 7, 743.

    Article  CAS  PubMed  Google Scholar 

  71. (a) M. H. Hanigan, H. F. Frierson, Jr., J. E. Brown, M. A. Lovell, and P. T. Taylor, Cancer Res., 1994, 54, 286; (b) D. Yao, D. Jiang, Z. Huang, J. Lu, Q. Tao, Z. Yu, and X. Meng, Cancer, 2000, 88, 761; (c) C. Schafer, C. Fels, M. Brucke, H. J. Holzhausen, H. Bahn, M. Wellman, A. Visvikis, P. Fischer, and N. G. Rainov, Acta Oncol., 2001, 40, 529.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Tetsuo Nagano, Assoc. Prof. Kenjiro Hanaoka, and Hiroki Ito for constructive comments for the paper. We also would like to thank W. R. S. Steele for careful proofreading of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuteru Urano.

Additional information

Toru Komatsureceived his Ph.D. in 2009 from the University of Tokyo. He worked at Johns Hopkins University (2009 – 2010) and The Scripps Research Institute (2010) as a postdoc. Currently, he works at the University of Tokyo as an Assistant Professor (2010 – present). He also works as a scientist of Japan Science and Technology Agency (JST), PRESTO. His current research interest is to develop small molecular tools to study enzymatic functions that have specific roles in physiological and pathological states.

Yasuteru Uranoworked as an Assistant Professor (1997 – 2004) and as an Associate Professor (2005 – 2010) of Sciences at the University of Tokyo. Then he became a professor of the Graduate School of Medicine (2010 – present) and the Graduate School of Pharmaceutical Sciences (2014 – present) at the University of Tokyo. He also worked as a scientist of Japan Science and Technology Agency (JST), PRESTO (2004 – 2007). His current research interest is development of novel small molecular-based photo-functional tools for visualizing and controlling important biological activities and phenomena in living cells and animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komatsu, T., Urano, Y. Evaluation of Enzymatic Activities in Living Systems with Small-molecular Fluorescent Substrate Probes. ANAL. SCI. 31, 257–265 (2015). https://doi.org/10.2116/analsci.31.257

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.31.257

Keywords

Navigation