Skip to main content

Principles and Instrumentation

  • Chapter
  • First Online:
Application of Near Infrared Spectroscopy in Biomedicine

Part of the book series: Handbook of Modern Biophysics ((HBBT,volume 4))

Abstract

Four major experimental techniques exist in the field of near infrared spectroscopy (NIRS). The simplest one is continuous-wave spectroscopy (CWS) in which a light of constant intensity is injected into tissue, and then the attenuated transmitted/reflected light signal is measured at a distance from the light source. The CWS technique has the limitation of obtaining only changes in optical density. More elaborate approaches such as spatially resolved spectroscopy (SRS), time-resolved spectroscopy (TRS), and phase-modulated spectroscopy (PMS) have certain advantages. The principles of these techniques are described in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bouguer P (1729) Essai d’optique sur la gradation de la lumière. Claude Jombert, Paris

    Google Scholar 

  2. Lambert JH (1760) Lambert’s photometrie: photometria, sive de mensura et gradibus luminis, colorum et umbrae. Wilhelm Engelmann, Berlin

    Google Scholar 

  3. Beer A (1852) Bestimmung der absorption des rothen Lichts in farbigen Flüssigkeiten. Annu Rev Phys Chem 86:78–88

    Google Scholar 

  4. Matcher SJ, Elwell CE, Cooper CE, Cope M, Delpy DT (1995) Performance comparison of several published tissue near-infrared spectroscopy algorithms. Anal Biochem 227:54–68

    Article  PubMed  CAS  Google Scholar 

  5. Hale GM, Querry MR (1973) Optical constants of water in the 200-nm to 200-mm wavelength region. Appl Opt 12:555–563

    Article  PubMed  CAS  Google Scholar 

  6. Ferrari M, Wei Q, Carraresi L, De Blasi RA, Zaccanti G (1992) Time-resolved spectroscopy of the human forearm. J Photochem Photobiol B: Biol 16:141–153

    Article  CAS  Google Scholar 

  7. Zaccanti G, Taddeucci A, Barilli M, Bruscaglioni P, Martelli F (1995) Optical properties of biological tissues. Proc SPIE 2389:513–521

    Article  Google Scholar 

  8. Kienle A, Lilge L, Patterson MS, Hibst R, Steiner R, Wilson BC (1996) Spatially resolved absolute absorption coefficients of biological tissue. Appl Opt 35:2304–2314

    Article  PubMed  CAS  Google Scholar 

  9. Matcher SJ, Cope M, Delpy DT (1997) In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy. Appl Opt 36:386–396

    Article  PubMed  CAS  Google Scholar 

  10. Mitic G, Közer J, Otto J, Plies E, Sökner G, Zinth W (1994) Time-gated transillumination of biological tissues and tissue like phantoms. Appl Opt 33:6699–6710

    Article  PubMed  CAS  Google Scholar 

  11. Suzuki K, Yamashita Y, Ohta K, Chance B (1994) Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy phantom and preliminary in vivo results. Invest Radiol 29:410–414

    Article  PubMed  CAS  Google Scholar 

  12. Firbank M, Hiraoka M, Essenpreis M, Delpy DT (1993) Measurement of the optical properties of the skull in the wavelength range 650–950 nm. Phys Med Biol 38:503–510

    Article  PubMed  CAS  Google Scholar 

  13. Bevilacqua F, Piguet D, Marquet P, Gross JD, Tromberg BJ, Depeursinge C (1999) In vivo local determination of tissue optical properties: applications to human brain. Appl Opt 38:4939–4950

    Article  PubMed  CAS  Google Scholar 

  14. Beek JF, van Staveren HJ, Posthumus P, Sterenborg HJ, van Gemert MJ (1993) The influence of respiration on optical properties of piglet lung at 632.8 nm. Med Opt Tomogr 32:193–210

    Google Scholar 

  15. Nicolai L (1932) Über sichtbarmachung, verlauf und chemische kinetic der, oxyhemoglobinreduktion im lebendum gewebe, besonders in der menschlichen haut. Arch Gesch Physiol 229:372–384

    Article  CAS  Google Scholar 

  16. Millikan GA (1942) The oximeter, an instrument for measuring continuously oxygen saturation of arterial blood in man. Rev Sci Instrum 13:434–444

    Article  CAS  Google Scholar 

  17. Wood EH, Geraci JE (1949) Photoelectric determination of arterial oxygen saturation in man. J Lab Clin Invest 34:387–401

    CAS  Google Scholar 

  18. Aoyagi T, Kishi M, Yamaguchi K, Watanabe S (1974) Improvement of earpiece oximeter. Proc 13th Conf Jpn Soc Med Electron Biol Eng 12:90–91

    Google Scholar 

  19. Jöbsis FF (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267

    Article  PubMed  Google Scholar 

  20. Ferrari M, Giannini I, Sideri G, Zanette E (1985) Continuous noninvasive monitoring of human brain by near infrared spectroscopy. Adv Exp Med Biol 191:873–882

    Article  PubMed  CAS  Google Scholar 

  21. Brazy JE, Lewis DV, Mitnick MH, Jöbsis FF (1985) Noninvasive monitoring of cerebral oxygenation in preterm infants. Pediatrics 75:217–225

    PubMed  CAS  Google Scholar 

  22. Chance B, Nioka S, Kent J, McCully K, Fountai M, Greenfeld R, Holtom G (1988) Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle. Anal Biochem 174:698–707

    Article  PubMed  CAS  Google Scholar 

  23. Tamura M, Hazeki O, Nioka S, Chance B, Smith DS (1988) The simultaneous measurements of tissue oxygen concentration and energy state by near-infrared and nuclear magnetic resonance spectroscopy. Adv Exp Med Biol 222:359–363

    Article  PubMed  CAS  Google Scholar 

  24. Schenkman KA, Marble DA, Feiglf EO, Burns DH (1999) Near-infrared spectroscopic measurement of myoglobin oxygen saturation in the presence of hemoglobin using partial least-squares analysis. Appl Spectrosc 53:325–331

    Article  CAS  Google Scholar 

  25. Marcinek DJ, Amara CE, Matz K, Conley KE, Schenkman KA (2007) Wavelength shift analysis: a simple method to determine the contribution of hemoglobin and myoglobin to in vivo optical spectra. Appl Spectrosc 61:665–669

    Article  PubMed  CAS  Google Scholar 

  26. Tran TK, Sailasuta N, Kreutzer U, Hurd R, Chung Y, Mole P, Kuno S, Jue T (1999) Comparative analysis of NMR and NIRS measurements of intracellular PO2 in human skeletal muscle. Am J Physiol 276:R1682–R1690

    PubMed  CAS  Google Scholar 

  27. Xie H, Kreutzer U, Jue T (2009) Oximetry with the NMR signals of hemoglobin Val E11 and Tyr C7. Eur J Appl Physiol 107:325–333

    Article  PubMed  CAS  Google Scholar 

  28. Chance B, Nioka S, Zhao Z (2007) A wearable brain imager. IEEE Eng Med Biol 26:30–37

    Article  Google Scholar 

  29. Hoshi Y, Tamura M (1993) Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man. Neurosci Lett 150:5–8

    Article  PubMed  CAS  Google Scholar 

  30. Chance B, Zhuang Z, UnAh C, Alter C, Lipton L (1993) Cognition-activated low-frequency modulation of light absorption in human brain. Proc Natl Acad Sci USA 90(8):3770–3774

    Article  PubMed  CAS  Google Scholar 

  31. Kato T, Kamei A, Takashima S, Ozaki T (1993) Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy. J Cereb Blood Flow Metab 13:516–520

    Article  PubMed  CAS  Google Scholar 

  32. Villringer A, Planck A, Hock C, Schleinkofer L, Dirnagl U (1993) Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults. Neurosci Lett 154:101–104

    Article  PubMed  CAS  Google Scholar 

  33. Patterson MS, Schwartz E, Wilson BC (1989) Quantitative reflectance spectrophotometry for the noninvasive measurement of photosensitizer concentration in tissue during photodynamic therapy. Proc SPIE 1065:115–122

    Article  CAS  Google Scholar 

  34. Matcher SJ, Kirkpatrick P, Nahid N, Cope M, Delpy DT (1995) Absolute quantification method in tissue near infrared spectroscopy. Proc SPIE 2389:486–495

    Article  Google Scholar 

  35. Suzuki S, Takasaki S, Ozaki T, Kobayashi K (1999) A tissue oxygenation monitor using NIR spatially resolved spectroscopy. Proc SPIE 3597:582–592

    Article  CAS  Google Scholar 

  36. Al-Rawi PJ, Smielewski P, Kirkpatrick PJ (2001) Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head. Stroke 32:2492–2500

    Article  PubMed  CAS  Google Scholar 

  37. Chance B, Leigh JS, Miyake H, Smiths DS, Nioka S, Greenfeld R, Finander M, Kaufmann K, Levy W, Young M, Cohen P, Yoshioka H, Boretsky R (1988) Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain. Proc Natl Acad Sci USA 85:4971–4975

    Article  PubMed  CAS  Google Scholar 

  38. Delpy DT, Cope M, van der Zee P, Arridge S, Wray S, Wyatt JS (1988) Estimation of optical pathlength through tissue from direct time of flight measurement. Phys Med Biol 33(12):1433–1442

    Article  PubMed  CAS  Google Scholar 

  39. Nomura M, Hazeki O, Tamura M (1989) Exponential attenuation of light along the nonlinear optical path in the scattered media. Adv Exp Med Biol 248:71–80

    Article  Google Scholar 

  40. Patterson MS, Chance B, Wilson BC (1989) Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties. Appl Opt 28:2331–2336

    Article  PubMed  CAS  Google Scholar 

  41. Oda M, Yamashita Y, Nakano T, Suzuki A, Shimizu K, Hirano I, Shimomura F, Ohmae E, Suzuki T, Tsuchiya Y (2000) Nearinfrared time-resolved spectroscopy system for tissue oxygenation monitor. Proc SPIE 4160:204–210

    Article  Google Scholar 

  42. Zhang H, Miwa M, Yamashita Y, Tsuchiya Y (1998) Simple subtraction method for determining the mean path length traveled by photons in turbid media. Jpn J Appl Phys 37–1(2):700–704

    Article  Google Scholar 

  43. Ichiji S, Kusaka T, Isobe K, Okubo K, Kawada K, Namba M, Okada H, Nishida T, Imai T, Itoh S (2005) Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy. Pediatr Res 58(3):568–572

    Article  Google Scholar 

  44. Ohmae E, Ouchi Y, Oda M, Suzuki T, Yamashita Y (2006) Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements. Neuroimage 29:697–705

    Article  PubMed  Google Scholar 

  45. Ohmae E, Oda M, Suzuki T, Yamashita Y, Kakihana Y, Matsunaga A, Kanmura Y, Tamura M (2007) Clinical evaluation of time-resolved spectroscopy by measuring cerebral hemodynamics during cardiopulmonary bypass surgery. J Biomed Opt 12(6):062112

    Article  PubMed  Google Scholar 

  46. Chance B, Hulsizer RI, MacNichol EF Jr, Williams FC (1949) Electronic time measurements, vol 20, MIT Radiation Laboratories Series. Boston Technical, Lexington

    Google Scholar 

  47. Ma HY, Du C, Chance B (1997) Homodyne frequency-domain instrument: I&Q Phase detection system. Proc SPIE 2979:826–837

    Article  CAS  Google Scholar 

  48. Kohl M, Watson R, Cope M (1997) Optical properties of highly scattering media determined from changes in attenuation, phase and modulation depth. Proc SPIE 2979:365–374

    Article  CAS  Google Scholar 

  49. Feddersen BA, Piston DW, Gratton E (1989) Digital parallel acquisition in frequency domain fluorometry. Rev Sci Instrum 60:2929–2936

    Article  Google Scholar 

  50. Madsen SJ, Anderson ER, Haskell RC, Tromberg BJ (1994) Portable, high-bandwidth frequency-domain photon migration instrument for tissue spectroscopy. Opt Lett 19:1934–1936

    Article  PubMed  CAS  Google Scholar 

  51. Chance B, Cope M, Gratton E, Ramanujam N, Tromberg B (1998) Phase mesurement of light absorption and scatter in human tissue. Rev Sci Instrum 69:3457–3481

    Article  CAS  Google Scholar 

  52. Fishkin JB, Gratton E (1993) Propagation of photon-density wave in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge. J Opt Soc Am A 10:127–140

    Article  PubMed  CAS  Google Scholar 

  53. Fantini S, Franceschini MA, Maier J, Walker S, Barbieri B, Gratton E (1995) Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry. Opt Eng 34:32–42

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatsugu Niwayama Ph.D. .

Editor information

Editors and Affiliations

Appendices

Problem

  1. 1.1.

    How can the weak photocurrent of an Si photodiode be converted to a voltage signal on continuous-wave NIRS or spatially resolved NIRS?

Further Reading

Demrow B (1971) Op amps as electrometers or — the world of fA. Anal Dial 5(2): 48–49

Frenzel LE (2007) Accurately measure nanoampere and picoampere currents. Electron Design Strat News, Feb 15

Hutchings MJ, Blake-Coleman BC (1994) A transimpedance converter for low-frequency, high-impedance measurements. Meas Sci Technol 5(3):310–313

Rako P (2007) Measuring nanoamperes. Electron Design Strat News, Apr 26

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yamashita, Y., Niwayama, M. (2013). Principles and Instrumentation. In: Jue, T., Masuda, K. (eds) Application of Near Infrared Spectroscopy in Biomedicine. Handbook of Modern Biophysics, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-6252-1_1

Download citation

Publish with us

Policies and ethics