Skip to main content
Log in

Preparation and Evaluation of a Cholesterol Derivatized β-Cyclodextrin-bonded Phase for Achiral and Chiral HPLC

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A cholesterol mono-derivatized β-cyclodextrin was synthesized and bonded onto silica gel (SBA-15) to obtain a cholesterol mono-derivatized β-cyclodextrin-bonded stationary phase (CHCDP). The chemical structures of mono-derivatized β-cyclodextrin and CHCDP were characterized by infrared spectroscopy, mass spectrometry, elemental analysis and thermogravimetric analysis, correspondingly. Furthermore, the separation ability of CHCDP in terms of achiral compounds was systematically evaluated by separating benzene homologs, polycyclic aromatic hydrocarbons (PAHs) and some positional isomers. As a result, CHCDP completely separated five benzene homologs and nine PAHs within 30 min under the reversed-phase. In addition, the chiral chromatographic property of CHCDP was also evaluated by separating some racemic compounds including flavanones, triazoles, β-blockers, etc. The results showed that the CHCDP exhibited high enantioselectivities towards most of selected analytes. The enantioresolutions were in the range from 1.43 to 2.51 on CHCDP. Especially the resolutions of 2′-hydroxyflavanone, hexaconazole, Dns-serine and atenolol were as high as 1.94, 1.91, 2.15 and 1.57, respectively. Obviously, the CHCDP was a versatile stationary phase with chiral and achiral separation capabilities in multi-mode chromatography, which was related to the introduction of cholesterol to the port of cyclodextrin, enhancing the hydrophobic interaction of cyclodextrin with achiral compounds, while maintaining the inclusion complexation of it with chiral compounds as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Harada, M. Shibata, T. Kitamori, and T. Sawada, Anal. Sci., 1999, 15, 647.

    Article  CAS  Google Scholar 

  2. J. Xie and L. Zhang, J. Chromatogr. A, 2016, 1463, 42.

    Article  CAS  PubMed  Google Scholar 

  3. D. Helman and S. Galactic, Acta Astronautica, 2018, 151, 595.

    Article  CAS  Google Scholar 

  4. S. R. Crowell, W. M. Henderson, J. F. Kenneke, and J. W. Fisher, Toxicol. Lett., 2011, 205, 154.

    Article  CAS  PubMed  Google Scholar 

  5. Q. Lu, L. Qiu, L. Yu, and S. Zhang, J. Hazard. Mater., 2019, 368, 849.

    Article  CAS  PubMed  Google Scholar 

  6. X. X. Han, T. L. Yao, and M. Liu, J. Chromatogr. A, 2008, 1063, 111.

    Article  Google Scholar 

  7. D. W. Armstrong, J. Chromatogr. A, 1991, 539, 83.

    Article  CAS  Google Scholar 

  8. T. J. Ward and K. D. Ward, Anal. Chem., 2012, 84, 626.

    Article  CAS  PubMed  Google Scholar 

  9. B. Zhao, L. Li, Y. Wang, and Z. Zhou, Chin. Chem. Lett., 2019, 30, 643.

    Article  CAS  Google Scholar 

  10. C. A. Chang, H. Abdelaziz, and N. Melchor, J. Chromatogr. A, 1985, 347, 51.

    Article  CAS  Google Scholar 

  11. Q. Zhong, L. He, T. E. Beesley, W. S. Trahanovsky, P. Sun, C. Wang, and D. W. Armstrong, J. Chromatogr. A, 2006, 1115, 19.

    Article  CAS  PubMed  Google Scholar 

  12. M. Zhou, Y. Long, Y. Zhi, and X. Xu, J. Chin. Chem. Lett., 2018, 29, 1399.

    Article  CAS  Google Scholar 

  13. L. Li, B. P. Cheng, R. D. Zhou, and Z. G. Cao, Talanta, 2017, 174, 179.

    Article  CAS  PubMed  Google Scholar 

  14. J. Zhou and J. Tang, J. Chromatogr. A, 2016, 1467, 169.

    Article  CAS  PubMed  Google Scholar 

  15. Y. Wang, D. J. Young, T. T. Y. Tan, and S. C. Ng, J. Chromatogr. A, 2010, 1217, 5103.

    Article  CAS  PubMed  Google Scholar 

  16. D. Y. Zhao, Q. S. Huo, and J. L. Feng, J. Am. Chem. Soc., 1998, 120, 6024.

    Article  CAS  Google Scholar 

  17. M. Liu, S. L. Da, Y. Q. Feng, and L. S. Li, Anal. Chim. Acta, 2005, 533, 89.

    Article  CAS  Google Scholar 

  18. G. Leone, M. Consumi, C. Franzi, G. Tamasi, S. Lamponi, and A. Donati, J. Drug Deliv. Sci. Tec., 2018, 43, 107.

    Article  CAS  Google Scholar 

  19. M. D. Muller, T. Poiger, and H. Buser, J. Agric. Food Chem., 2001, 49, 42.

    Article  CAS  PubMed  Google Scholar 

  20. G. S. Do Nascimento, R. P. Constantin, and E. H. Gilglioni, Toxicol. Lett., 2018, 291, 158.

    Article  PubMed  Google Scholar 

  21. L. Toribio, M. J. del Nozal, J. L. Bernal, J. J. Jiménez, and C. Alonso, J. Chromatogr. A, 2004, 1046, 249.

    CAS  PubMed  Google Scholar 

  22. L. Wang, S. Dong, F. Han, and Y. Zhao, J. Chromatogr. A, 2015, 1383, 70.

    Article  CAS  PubMed  Google Scholar 

  23. Z. H. Yun and H. T. Lu, Amino Acids Bio. Res., 1996, 18, 4.

    Google Scholar 

  24. Y. Zhang, J. Am. Soc. Hypertens., 2017, 11, 394.

    Article  CAS  PubMed  Google Scholar 

  25. J. Bojarski, J. Biochem. Biophys. Meth., 2002, 54, 197

    Article  CAS  PubMed  Google Scholar 

  26. S. Morante-Zarcero and I. Sierra, J. Pharm. Biomed. Anal., 2012, 62, 33.

    Article  CAS  PubMed  Google Scholar 

  27. S. C. Chang, G. L. Reid, S. Chen, C. D. Chang, and D. W. Armstrong, Trac—Trends Anal. Chem., 1993, 12, 144.

    Article  CAS  Google Scholar 

  28. F. Vincent Warren, Anal. Chem., 1988, 60, 2821.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laisheng Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Shuang, Y., Zhang, T. et al. Preparation and Evaluation of a Cholesterol Derivatized β-Cyclodextrin-bonded Phase for Achiral and Chiral HPLC. ANAL. SCI. 36, 687–691 (2020). https://doi.org/10.2116/analsci.19P399

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19P399

Keywords

Navigation