Skip to main content
Log in

Cross-linked γ-cyclodextrin metal-organic framework—a new stationary phase for the separations of benzene series and polycyclic aromatic hydrocarbons

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The cross-linked γ-cyclodextrin metal-organic framework (CL-CD-MOF) was synthesized by crosslinking γ-cyclodextrin metal-organic framework (γ-CD-MOF) with diphenyl carbonate to separate benzene series and polycyclic aromatic hydrocarbons (PAHs). The separation ability of the CL-CD-MOF packed column was assessed in both reverse-phase (RP-) and normal-phase (NP-) modes. The retention mechanisms of these compounds were discussed and confirmed by combining molecular simulations in detail. It was found that baseline separation could be obtained in RP-HPLC mode and it was superior to commercial C18 column in separating xylene isomers. The interaction between CL-CD-MOF and analytes, such as dipole-dipole interaction, π-electron transfer interaction, hydrophobic interaction, and van der Waals force, may dominate the chromatographic separation, and CL-CD-MOF column had a certain shape recognition ability. In addition, the composition of the mobile phase also had a crucial effect. Moreover, the column demonstrated satisfactory stability and repeatability (the relative standard deviations of retention time, peak height, peak area, and half peak width for six replicate separations of the tested analytes were within the ranges 0.17–1.1%, 0.96–1.9%, 0.23–1.7%, and 0.32–1.9%, respectively) and there was no significant change in the separation efficiency for at least 3 years of use. Thermodynamic characteristics indicated that the process of separations on the CL-CD-MOF column was both negative enthalpy change (ΔH) and entropy change (ΔS) controlled. The excellent performance made CL-CD-MOF a promising HPLC stationary phase material for separation and determination of benzene series and PAHs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

γ-CD:

γ-Cyclodextrin

MOF:

Metal-organic framework

γ-CD-MOF:

γ-Cyclodextrin metal-organic framework

CL-CD-MOF:

Cross-linked γ-cyclodextrin metal-organic framework

PAHs:

Polycyclic aromatic hydrocarbons

ΔH:

Enthalpy change

ΔS:

Entropy change

ΔG:

Gibbs free energy

EB:

Ethylbenzene

H2O:

Water

MeOH:

Methanol

Hex:

n-Hexane

DCM:

Dichloromethane

TGA:

Thermogravimetric analysis

FT-IR:

Fourier transform infrared

SEM:

Scanning electron microscope

PXRD:

Powder X-ray diffraction

References

  1. Minceva M, Rodrigues AE (2007) Understanding and revamping of industrial scale SMB units for p-xylene separation. AICHE J 53(1):138–149

    Article  CAS  Google Scholar 

  2. Cavani F, Trifirò F (1995) Alternative processes for the production of styrene. Appl Catal A Gen 133(2):219–239

    Article  CAS  Google Scholar 

  3. Manoli E, Samara C (1999) Polycyclic aromatic hydrocarbons in natural waters: sources, occurrence and analysis. TrAC Trends Anal Chem 18(6):417–428

    Article  CAS  Google Scholar 

  4. Gimeno RA, Comas E, Marcé RM, Ferré J, Rius FX, Borrull F (2003) Second-order bilinear calibration for determining polycyclic aromatic compounds in marine sediments by solvent extraction and liquid chromatography with diode-array detection. Anal Chim Acta 498(1–2):47–53

    Article  CAS  Google Scholar 

  5. Zhao WW, Zhang CY, Yan ZG, Bai LP, Wang X, Huang H, Zhou YY, Xie Y, Li FS, Li JR (2014) Separations of substituted benzenes and polycyclic aromatic hydrocarbons using normal- and reverse-phase high performance liquid chromatography with UiO-66 as the stationary phase. J Chromatogr A 1370:121–128

    Article  CAS  Google Scholar 

  6. Yan Z, Zheng J, Chen J, Tong P, Lu M, Lin Z, Zhang L (2014) Preparation and evaluation of silica-UIO-66 composite as liquid chromatographic stationary phase for fast and efficient separation. J Chromatogr A 1366:45–53

    Article  CAS  Google Scholar 

  7. Yang CX, Liu SS, Wang HF, Wang SW, Yan XP (2012) High-performance liquid chromatographic separation of position isomers using metal-organic framework MIL-53(Al) as the stationary phase. Analyst 137(1):133–139

    Article  CAS  Google Scholar 

  8. Yan Z, Zhang W, Gao J, Lin Y, Li J, Lin Z, Zhang L (2015) Reverse-phase high performance liquid chromatography separation of positional isomers on a MIL-53(Fe) packed column. RSC Adv 5(50):40094–40102

    Article  CAS  Google Scholar 

  9. Alaerts L, Maes M, Veen MAVD, Jacobs PA, Vos DED (2009) Metal–organic frameworks as high-potential adsorbents for liquid-phase separations of olefins, alkylnaphthalenes and dichlorobenzenes. Phys Chem Chem Phys 11(16):2903–2911

    Article  CAS  Google Scholar 

  10. Qu Q, Si Y, Xuan H, Zhang K, Chen X, Ding Y, Feng S, Yu H-Q (2017) A nanocrystalline metal organic framework confined in the fibrous pores of core-shell silica particles for improved HPLC separation. Microchim Acta 184(10):4099–4106

    Article  CAS  Google Scholar 

  11. Wu X, Shao Y, Hu B, Wang J, Hou X (2020) Preparation and application of novel MIL-101(Cr) composite in liquid chromatographic separation of aromatic compounds: experimental and computational insights. Mikrochim Acta 187(8):471

    Article  CAS  Google Scholar 

  12. Hartlieb KJ, Holcroft JM, Moghadam PZ, Vermeulen NA, Algaradah MM, Nassar MS, Botros YY, Snurr RQ, Stoddart JF (2016) CD-MOF: a versatile separation medium. J Am Chem Soc 138(7):2292–2301

    Article  CAS  Google Scholar 

  13. Holcroft JM, Hartlieb KJ, Moghadam PZ, Bell JG, Barin G, Ferris DP, Bloch ED, Algaradah MM, Nassar MS, Botros YY, Thomas KM, Long JR, Snurr RQ, Stoddart JF (2015) Carbohydrate-mediated purification of petrochemicals. J Am Chem Soc 137(17):5706–5719

    Article  CAS  Google Scholar 

  14. Roy I, Stoddart JF (2021) Cyclodextrin metal-organic frameworks and their applications. Acc Chem Res 54(6):1440–1453

    Article  CAS  Google Scholar 

  15. Liu B, He Y, Han L, Singh V, Xu X, Guo T, Meng F, Xu X, York P, Liu Z, Zhang J (2017) Microwave-assisted rapid synthesis of γ-cyclodextrin metal–organic frameworks for size control and efficient drug loading. Cryst Growth Des 17(4):1654–1660

    Article  CAS  Google Scholar 

  16. Xu X, Wang C, Li H, Li X, Liu B, Singh V, Wang S, Sun L, Gref R, Zhang J (2017) Evaluation of drug loading capabilities of γ-cyclodextrin-metal organic frameworks by high performance liquid chromatography. J Chromatogr A 1488:37–44

    Article  CAS  Google Scholar 

  17. Bello MG, Yang Y, Wang C, Wu L, Zhou P, Ding H, Ge X, Guo T, Wei L, Zhang J (2020) Facile synthesis and size control of 2D cyclodextrin-based metal–organic frameworks Nanosheet for topical drug delivery. Part Part Syst Charact 37(11):2000147

    Article  CAS  Google Scholar 

  18. Ji Y, Xiong Z, Huang G, Liu J, Zhang Z, Liu Z, Ou J, Ye M, Zou H (2014) Efficient enrichment of glycopeptides using metal-organic frameworks by hydrophilic interaction chromatography. Analyst 139(19):4987–4993

    Article  CAS  Google Scholar 

  19. Singh V, Guo T, Wu L, Xu J, Liu B, Gref R, Zhang J (2017) Template-directed synthesis of a cubic cyclodextrin polymer with aligned channels and enhanced drug payload. RSC Adv 7(34):20789–20794

    Article  CAS  Google Scholar 

  20. He Y, Xu J, Sun X, Ren X, Maharjan A, York P, Su Y, Li H, Zhang J (2019) Cuboidal tethered cyclodextrin frameworks tailored for hemostasis and injured vessel targeting. Theranostics 9(9):2489–2504

    Article  CAS  Google Scholar 

  21. Engelhardt H, Jungheim M (1990) Comparison and characterization of reversed phases. Chromatographia 29(1):59–68

    Article  CAS  Google Scholar 

  22. Liu XY, Wang LH, Zheng Z, Kang ML, Li C, Liu CL (2013) Molecular dynamics simulation of the diffusion of uranium species in clay pores. J Hazard Mater 244-245:21–28

    Article  CAS  Google Scholar 

  23. Sun M, Zhang X, Gao Z, Liu T, Luo C, Zhao Y, Liu Y, He Z, Wang J, Sun J (2019) Probing a dipeptide-based supramolecular assembly as an efficient camptothecin delivering carrier for cancer therapy: computational simulations and experimental validations. Nanoscale 11(9):3864–3876

    Article  CAS  Google Scholar 

  24. Zhang X, Han Q, Ding M (2015) One-pot synthesis of UiO-66@SiO2 shell–core microspheres as stationary phase for high performance liquid chromatography. RSC Adv 5(2):1043–1050

    Article  CAS  Google Scholar 

  25. Zhu B, Yao Y, Deng M, Jiang Z, Li Q (2018) Enantioselective separation of twelve pairs of enantiomers on polysaccharide-based chiral stationary phases and thermodynamic analysis of separation mechanism. Electrophoresis 39(19):2398–2405

    Article  CAS  Google Scholar 

  26. Fu YY, Yang CX, Yan XP (2013) Metal-organic framework MIL-100(Fe) as the stationary phase for both normal-phase and reverse-phase high performance liquid chromatography. J Chromatogr A 1274:137–144

    Article  CAS  Google Scholar 

  27. Ehrling S, Kutzscher C, Freund P, Müller P, Senkovska I, Kaskel S (2018) MOF@SiO 2 core-shell composites as stationary phase in high performance liquid chromatography. Microporous Mesoporous Mater 263:268–274

    Article  CAS  Google Scholar 

  28. Qu Q, Xuan H, Zhang K, Chen X, Ding Y, Feng S, Xu Q (2017) Core-shell silica particles with dendritic pore channels impregnated with zeolite imidazolate framework-8 for high performance liquid chromatography separation. J Chromatogr A 1505:63–68

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81573392).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Sun.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 8775 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Li, C., Wu, Y. et al. Cross-linked γ-cyclodextrin metal-organic framework—a new stationary phase for the separations of benzene series and polycyclic aromatic hydrocarbons. Microchim Acta 188, 245 (2021). https://doi.org/10.1007/s00604-021-04899-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04899-7

Keywords

Navigation