Skip to main content
Log in

Indirect Interactions between Raman Probes Encapsulated within Cucurbit[7]urils and Gold Nanorods to Enhance Long-term Stability and Signal

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Surface-enhanced Raman scattering (SERS) is a powerful technique that enhances Raman signals by adsorbing probe molecules on rough metal surfaces. However, SERS is limited because target molecules must strongly interact with metal to enhance a stable Raman signal. In this study, to improve long-term SERS stability, we use cucurbit[7]urils (CB[7]) as bridge molecules and sample containers to probe Rhodamine 6G (R6G) molecules. We observed interactions between gold nanorods (AuNRs) and CB[7] via aggregate formation, which enhanced the Raman signal and improved long-term R6G probe stability by up to 20 days when encapsulated within CB[7] during SERS analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Hendra and P. M. Stratton, Chem. Rev., 1969, 69, 325.

    Article  CAS  Google Scholar 

  2. S. He, J. Chua, E. K. M. Tan, and J. C. Y. Kah, RSC Adv., 2017, 7, 16264.

    Article  CAS  Google Scholar 

  3. P. Hildebrandt and M. Stockburger, J. Phys. Chem., 1984, 88, 5935.

    Article  CAS  Google Scholar 

  4. S. Pahlow, T. Mayerhöfer, M. van der Loh, U. Hübner, J. Dellith, K. Weber, and J. Popp, Anal. Chem., 2018, 90, 9025.

    Article  CAS  PubMed  Google Scholar 

  5. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, Phys. Rev. Lett., 1997, 78, 1667.

    Article  CAS  Google Scholar 

  6. M. Suzuki, Y. Niidome, N. Terasaki, K. Inoue, Y. Kuwahara, and S. Yamada, Jpn. J. Appl. Phys., 2004, 43, L554.

    Article  CAS  Google Scholar 

  7. G. Macias, M. Alba, L. F. Marsal, and A. Mihi, J. Mater. Chem. C, 2016, 4, 3970.

    Article  CAS  Google Scholar 

  8. G. Xue, J. Dong, and J. Zhang, Macromolecules, 1992, 25, 5855.

    Article  CAS  Google Scholar 

  9. M. Seo and J. W. Ha, Microchem. J., 2018, 140, 47.

    Article  CAS  Google Scholar 

  10. A. Feofanov, A. Ianoul, E. Kryukov, S. Maskevich, G. Vasiliuk, L. Kivach, and I. Nabiev, Anal. Chem., 1997, 69, 3731.

    Article  CAS  Google Scholar 

  11. M. Nowak, A. Trojanowska, L. Marciniak, M. Binczyk, T. Runka, B. Tylkowski, and R. Jastrzab, Appl. Surf. Sci., 2018, 472, 93.

    Article  Google Scholar 

  12. Y. Liu, H. Wu, L. Ma, S. Zou, Y. Ling, and Z. Zhang, Nanoscale, 2018, 10, 19863.

    Article  CAS  PubMed  Google Scholar 

  13. M. Zhao, H. Guo, W. Liu, J. Tang, L. Wang, B. Zhang, C. Xue, J. Liu, and W. Zhang, Nanoscale Res. Lett., 2016, 11, 403.

    Article  PubMed  PubMed Central  Google Scholar 

  14. K. M. Park, K. Baek, Y. H. Ko, A. Shrinidhi, J. Murray, W. H. Jang, K. H. Kim, J.-S. Lee, J. Yoo, S. Kim, and K. Kim, Angew. Chem. Int. Ed., 2018, 57, 3132.

    Article  CAS  Google Scholar 

  15. S. J. Barrow, S. Kasera, M. J. Rowland, J. del Barrio, and O. A. Scherman, Chem. Rev., 2015, 115, 12320.

    Article  CAS  PubMed  Google Scholar 

  16. E. Masson, X. Ling, R. Joseph, L. Kyeremeh-Mensah, and X. Lu, RSC Adv., 2012, 2, 1213.

    Article  CAS  Google Scholar 

  17. N. H. Kim, W. Hwang, K. Baek, M. R. Rohman, J. Kim, H. W. Kim, J. Mun, S. Y. Lee, G. Yun, and J. Murray, J. Am. Chem. Soc., 2018, 140, 4705.

    Article  CAS  PubMed  Google Scholar 

  18. T.-C. Lee and O. A. Scherman, Chem. Commun., 2010, 46, 2438.

    Article  CAS  Google Scholar 

  19. S. T. Jones, R. W. Taylor, R. Esteban, E. K. Abo-Hamed, P. H. Bomans, N. A. Sommerdijk, J. Aizpurua, J. J. Baumberg, and O. A. Scherman, Small, 2014, 10, 4298.

    CAS  PubMed  Google Scholar 

  20. C.-a. Tao, Q. An, W. Zhu, H. Yang, W. Li, C. Lin, D. Xu, and G. Li, Chem. Commun., 2011, 47, 9867.

    Article  CAS  Google Scholar 

  21. J. Kim, I.-S. Jung, S.-Y. Kim, E. Lee, J.-K. Kang, S. Sakamoto, K. Yamaguchi, and K. Kim, J. Am. Chem. Soc., 2000, 122, 540.

    Article  CAS  Google Scholar 

  22. D. Radziuka and H. Moehwald, Nanoscale, 2014, 6, 6115.

    Article  Google Scholar 

  23. Q. An, G. Li, C. Tao, Y. Li, Y. Wu, and W. Zhang, Chem. Commun., 2008, 17, 1989.

    Article  Google Scholar 

  24. S. Mahajan, T.-C. Lee, F. Biedermann, J. T. Hugall, J. J. Baumberg, and O. A. Scherman, Phys. Chem. Chem. Phys., 2010, 12, 10429.

    Article  CAS  PubMed  Google Scholar 

  25. G. Y. Tonga, T. Mizuhara, K. Saha, Z. Jiang, S. Hou, R. Das, and V. M. Rotello, Tetrahedron Lett., 2015, 56, 3653.

    Article  PubMed  PubMed Central  Google Scholar 

  26. D. Shetty, J. K. Khedkar, K. M. Park, and K. Kim, Chem. Soc. Rev., 2015, 44, 8747.

    Article  CAS  PubMed  Google Scholar 

  27. J. Mohanty and W. M. Nau, Angew. Chem. Int. Ed., 2005, 44, 3750.

    Article  CAS  Google Scholar 

  28. A. L. Koner, and W. M. Nau, Supramol. Chem., 2007, 19, 55.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

J. W. H is grateful for the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (No. 2018R1C1B3001154). We thank Prof. Kimoon Kim at Pohang University of Science and Technology for donating CB[7] and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Won Ha.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, M.J., Baek, K. & Ha, J.W. Indirect Interactions between Raman Probes Encapsulated within Cucurbit[7]urils and Gold Nanorods to Enhance Long-term Stability and Signal. ANAL. SCI. 35, 1009–1013 (2019). https://doi.org/10.2116/analsci.19P144

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19P144

Keywords

Navigation