Skip to main content
Log in

Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The design and synthesis of plasmonic nanoparticles with Raman-active molecules embedded inside them are of significant interest for sensing and imaging applications. However, direct synthesis of such nanostructures with controllable shape, size, and plasmonic properties remains extremely challenging. Here we report on the preparation of uniform Au@Ag core/shell nanorods with controllable Ag shells of 1 to 25 nm in thickness. 1,4-Aminothiophenol (4-ATP) molecules, used as the Raman reporters, were located between the Au core and the Ag shell. Successful embedding of reporter molecules inside the core/shell nanoparticles was confirmed by the absence of selective oxidation of the amino groups, as measured by Raman spectroscopy. The dependence of Raman intensity on the location of the reporter molecules in the inside and outside of the nanorods was studied. The molecules in the interior showed strong and uniform Raman intensity, at least an order of magnitude higher than that of the molecules on the nanoparticle surface. In contrast to the usual surface-functionalized Raman tags, aggregation and clustering of nanoparticles with embedded molecules decreased the surface-enhanced Raman scattering (SERS) signal. The findings from this study provide the basis for a novel detection technique of low analyte concentration utilizing the high SERS response of molecules inside the core/shell metal nanostructures. As an example, we show robust SERS detection of thiram fungicide as low as 10−9 M in solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vo-Dinh, T.; Hiromoto, M. Y. K.; Begun, G. M.; Moody, R. L. Surface-enhanced Raman spectrometry for trace organic analysis. Anal. Chem. 1984, 56, 1667–1670.

    Article  Google Scholar 

  2. Bell, S. E. J.; Sirimuthu, N. M. S. Quantitative surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2008, 37, 1012–1024.

    Article  Google Scholar 

  3. Wang, Y. Q.; Yan, B.; Chen, L. X. SERS tags: Novel optical nanoprobes for bioanalysis. Chem. Rev. 2013, 113, 1391–1428.

    Article  Google Scholar 

  4. Allgeyer, E. S.; Pongan, A.; Browne, M.; Mason, M. D. Optical signal comparison of single fluorescent molecules and Raman active gold nanostars. Nano Lett. 2009, 9, 3816–3819.

    Article  Google Scholar 

  5. Cao, Y. C.; Jin, R. C.; Mirkin, C. A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 2002, 297, 1536–1540.

    Article  Google Scholar 

  6. Kang, T.; Yoo, S. M.; Yoon, I.; Lee, S. Y.; Kim, B. Patterned multiplex pathogen DNA detection by Au particle-on-wire SERS sensor. Nano Lett. 2010, 10, 1189–1193.

    Article  Google Scholar 

  7. Wang, Y. L.; Seebald, J. L.; Szeto, D. P.; Irudayaraj, J. Biocompatibility and biodistribution of surface-enhanced Raman scattering nanoprobes in zebrafish embryos: In vivo and multiplex imaging. ACS Nano 2010, 4, 4039–4053.

    Article  Google Scholar 

  8. Yuan, H.; Liu, Y.; Fales, A. M.; Li, Y. L.; Liu, J.; Vo-Dinh, T. Quantitative surface-enhanced resonant Raman scattering multiplexing of biocompatible gold nanostars for in vitro and ex vivo detection. Anal. Chem. 2013, 85, 208–212.

    Article  Google Scholar 

  9. Yuan, H.; Fales, A. M.; Khoury, C. G.; Liu, J.; Vo-Dinh, T. Spectral characterization and intracellular detection of surface-enhanced Raman scattering (SERS)-encoded plasmonic gold nanostars. J. Raman Spectrosc. 2013, 44, 234–239.

    Article  Google Scholar 

  10. Fales, A. M.; Vo-Dinh, T. Silver embedded nanostars for SERS with internal reference (SENSIR). J. Mater. Chem. C 2015, 3, 7319–7324.

    Article  Google Scholar 

  11. Blaber, M. G.; Schatz, G. C. Extending SERS into the infrared with gold nanosphere dimers. Chem. Commun. 2011, 47, 3769–3771.

    Article  Google Scholar 

  12. Pelton, M.; Aizpurua, J.; Bryant, G. Metal-nanoparticle plasmonics. Laser Photon. Rev. 2008, 2, 136–159.

    Article  Google Scholar 

  13. Gandra, N.; Singamaneni, S. Bilayered Raman-intense gold nanostructures with hidden tags (BRIGHTs) for high-resolution bioimaging. Adv. Mater. 2013, 25, 1022–1027.

    Article  Google Scholar 

  14. Lim, D.-K.; Jeon, K. S.; Hwang, J. H.; Kim, H.; Kwon, S.; Suh, Y. D.; Nam, J. M. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat. Nanotechnol. 2011, 6, 452–460.

    Article  Google Scholar 

  15. Zhao, B.; Shen, J. L.; Chen, S. X.; Wang, D. F.; Li, F.; Mathur, S.; Song, S. P.; Fan, C. H. Gold nanostructures encoded by non-fluorescent small molecules in polyAmediated nanogaps as universal SERS nanotags for recognizing various bioactive molecules. Chem. Sci. 2014, 5, 4460–4466.

    Article  Google Scholar 

  16. Song, J. B.; Duan, B.; Wang, C. X.; Zhou, J. J.; Pu, L.; Fang, Z.; Wang, P.; Lim, T. T.; Duan, H. W. SERS-encoded nanogapped plasmonic nanoparticles: Growth of metallic nanoshell by templating redox-active polymer brushes. J. Am. Chem. Soc. 2014, 136, 6838–6841.

    Article  Google Scholar 

  17. Ayala-Orozco, C.; Liu, J. G.; Knight, M. W.; Wang, Y. M.; Day, J. K.; Nordlander, P.; Halas, N. J. Fluorescence enhancement of molecules inside a gold nanomatryoshka. Nano Lett. 2014, 14, 2926–2933.

    Article  Google Scholar 

  18. Kang, J. W.; So, P. T. C.; Dasari, R. R.; Lim, D.-K. High resolution live cell Raman imaging using subcellular organelle-targeting SERS-sensitive gold nanoparticles with highly narrow intra-nanogap. Nano Lett. 2015, 15, 1766–1772.

    Article  Google Scholar 

  19. Oh, J.-W.; Lim, D.-K.; Kim, G.-H.; Suh, Y. D. Nam, J.-M. Thiolated DNA-based chemistry and control in the structure and optical properties of plasmonic nanoparticles with ultrasmall interior nanogap. J. Am. Chem. Soc. 2014, 136, 14052–14059.

    Article  Google Scholar 

  20. Shen, J. L.; Su, J.; Yan, J.; Zhao, B.; Wang, D. F.; Wang, S. Y.; Li, K.; Liu, M. M.; He, Y.; Mathur, S. et al. Bimetallic nano-mushrooms with DNA-mediated interior nanogaps for high-efficiency SERS signal amplification. Nano Res. 2015, 8, 731–742.

    Article  Google Scholar 

  21. Hwang, J.-H.; Singhal, N. K.; Lim, D.-K.; Nam, J.-M. Au nanocucumbers with interior nanogap for multiple laser wavelength-compatible surface-enhanced Raman scattering. Bull. Korean Chem. Soc. 2015, 36, 882–886.

    Google Scholar 

  22. Zhou, Y.; Zhang, P. Simultaneous SERS and surface-enhanced fluorescence from dye-embedded metal core–shell nanoparticles. Phys. Chem. Chem. Phys. 2014, 16, 8791–8794.

    Article  Google Scholar 

  23. Zhou, Y.; Lee, C.; Zhang, J. N.; Zhang, P. Engineering versatile SERS-active nanoparticles by embedding reporters between Au-core/Ag-shell through layer-by-layer deposited polyelectrolytes. J. Mater. Chem. C 2013, 1, 3695–3699.

    Article  Google Scholar 

  24. Pinkhasova, P.; Puccio, B.; Chou, T.; Sukhishvili, S.; Du, H. Noble metal nanostructure both as a SERS nanotag and an analyte probe. Chem. Commun. 2012, 48, 9750–9752.

    Article  Google Scholar 

  25. Shen, W.; Lin, X.; Jiang, C. Y.; Li, C. Y.; Lin, H. X.; Huang, J. T.; Wang, S.; Liu, G. K.; Yan, X. M.; Zhong, Q. L. et al. Reliable quantitative SERS analysis facilitated by core–shell nanoparticles with embedded internal standards. Angew. Chem., Int. Ed. 2015, 54, 7308–7312.

    Article  Google Scholar 

  26. Khlebtsov, B. N.; Khanadeev, V. A.; Ye, J.; Sukhorukov, G. B.; Khlebtsov, N. G. Overgrowth of gold nanorods by using a binary surfactant mixture. Langmuir 2014, 30, 1696–1703.

    Article  Google Scholar 

  27. Xiang, Y. J.; Wu, X. C.; Liu, D. F.; Li, Z. Y.; Chu, W. G.; Feng, L. L.; Zhang, K.; Zhou, W. Y.; Xie, S. S. Gold nanorod-seeded growth of silver nanostructures: From homogeneous coating to anisotropic coating. Langmuir 2008, 24, 3465–3470.

    Article  Google Scholar 

  28. Ye, X. C.; Zheng, C.; Chen, J.; Gao, Y. Z.; Murray, C. B. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett. 2013, 13, 765–771.

    Article  Google Scholar 

  29. Bach, R. D.; Su, M.-D.; Schlegel, B. Oxidation of amines and sulfides with hydrogen peroxide and alkyl hydrogen peroxide. The nature of the oxygen-transfer step. J. Am. Chem. Soc. 1994, 116, 5379–5391.

    Article  Google Scholar 

  30. Khlebtsov, B. N.; Khanadeev, V. A.; Khlebtsov, N. G. Observation of extra-high depolarized light scattering spectra from gold nanorods. J. Phys. Chem. C 2008, 112, 12760–12768.

    Article  Google Scholar 

  31. Eustis, S.; El-Sayed, M. A. Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed in homogeneously broadened longitudinal plasmon resonance absorption spectrum. J. Appl. Phys. 2006, 100, 044324.

    Article  Google Scholar 

  32. Okuno, Y.; Nishioka, K.; Kiya, A.; Nakashima, N.; Ishibashi, A.; Niidome, Y. Uniform and controllable preparation of Au–Ag core–shell nanorods using anisotropic silver shell formation on gold nanorods. Nanoscale 2010, 2, 1489–1493.

    Article  Google Scholar 

  33. Tebbe, M.; Kuttner, C.; Mayer, M.; Maennel, M.; Pazos-Perez, N.; König, T. A. F.; Fery, A. Silver-overgrowthinduced changes in intrinsic optical properties of gold nanorods: From noninvasive monitoring of growth kinetics to tailoring internal mirror charges. J. Phys. Chem. C 2015, 119, 9513–9523.

    Article  Google Scholar 

  34. PubChem. https://pubchem.ncbi.nlm.nih.gov/compound/4-Aminothiophenol#section=Depositor-Supplied-Synonyms (accessed Nov 20, 2015).

  35. Hu, X. G.; Wang, T.; Wang, L.; Dong, S. J. Surface-enhanced Raman scattering of 4-aminothiophenol self-assembled monolayers in sandwich structure with nanoparticle shape dependence: Off-surface plasmon resonance condition. J. Phys. Chem. C 2007, 111, 6962–6969.

    Article  Google Scholar 

  36. Lin, L.; Zapata, M.; Xiong, M.; Liu, Z. H.; Wang, S. S.; Xu, H.; Borisov, A. G.; Gu, H. C.; Nordlander, P.; Aizpurua, J. et al. Nanooptics of plasmonic nanomatryoshkas: Shrinking the size of a core–shell junction to subnanometer. Nano Lett. 2015, 15, 6419–6428.

    Article  Google Scholar 

  37. Khlebtsov, B. N.; Liu, Z. H.; Ye, J.; Khlebtsov, N. G. Au@Ag core/shell cuboids and dumbbells: Optical properties and SERS response. J. Quant. Spectrosc. Radiat. Transfer 2015, 167, 64–75.

    Article  Google Scholar 

  38. Cortie, M. B.; Liu, F. G.; Arnold, M. D.; Niidome, Y. Multimode resonances in silver nanocuboids. Langmuir 2012, 28, 9103–9112.

    Article  Google Scholar 

  39. McMahon, J. M.; Wang, Y. M.; Sherry, L. J.; Van Duyne, R. P.; Marks, L. D.; Gray, S. K.; Schatz, G. C. Correlating the structure, optical spectra, and electrodynamics of single silver nanocubes. J. Phys. Chem. C 2009, 113, 2731–2735.

    Article  Google Scholar 

  40. Fuchs, R. Theory of the optical properties of ionic crystal cubes. Phys. Rev. B 1975, 11, 1732–1740.

    Article  Google Scholar 

  41. Jiang, R.; Chen, H.; Shao, L.; Li, Q.; Wang, J. Unraveling the evolution and nature of the plasmons in (Au core)–(Ag shell) nanorods. Adv. Mater. 2012, 24, OP200–OP207.

    Google Scholar 

  42. Ye, J.; Hutchison, J. A.; Uji-i, H.; Hofkens, J.; Lagae, L.; Maes, G.; Borghs, G.; Van Dorpe, P. Excitation wavelength dependent surface enhanced Raman scattering of 4-aminothiophenol on gold nanorings. Nanoscale 2012, 4, 1606–1611.

    Article  Google Scholar 

  43. Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G. Surface enhanced Raman scattering enhancement factors: A comprehensive study. J. Phys. Chem. C 2007, 111, 13794–13803.

    Article  Google Scholar 

  44. Orendorff, C. J.; Gearheart, L.; Jana, N. R.; Murphy, C. J. Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Phys. Chem. Chem. Phys. 2006, 8, 165–170.

    Article  Google Scholar 

  45. Oo, M. K. K.; Guo, Y. B.; Reddy, K.; Liu, J.; Fan, X. D. Ultrasensitive vapor detection with surface-enhanced Raman scattering-active gold nanoparticle immobilized flow-through multihole capillaries. Anal. Chem. 2012, 84, 3376–3381.

    Article  Google Scholar 

  46. Hu, Y.; Noelck, S. J.; Drezek, R. A. Symmetry breaking in gold−silica−gold multilayer nanoshells. ACS Nano 2010, 4, 1521–1528.

    Article  Google Scholar 

  47. Mukherjee, S.; Sobhani, H.; Lassiter, J. B.; Bardhan, R.; Nordlander, P.; Halas, N. J. Fanoshells: Nanoparticles with built-in Fano resonances. Nano Lett. 2010, 10, 2694–2701.

    Article  Google Scholar 

  48. Tan, S. F.; Wu, L.; Yang, J. K. W.; Bai, P.; Bosman, M.; Nijhuis, C. A. Quantum plasmon resonances controlled by molecular tunnel junctions. Science 2014, 343, 1496–1499.

    Article  Google Scholar 

  49. Scholl, J. A.; García-Etxarri, A.; Koh, A. L.; Dionne, J. A. Observation of quantum tunneling between two plasmonic nanoparticles. Nano Lett. 2013, 13, 564–569.

    Article  Google Scholar 

  50. Huang, Y.-F.; Zhu, H.-P.; Liu, G.-K.; Wu, D.-Y.; Ren, B.; Tian, Z.-Q. When the signal is not from the original molecule to be detected: Chemical transformation of paraaminothiophenol on Ag during the SERS measurement. J. Am. Chem. Soc. 2010, 132, 9244–9246.

    Article  Google Scholar 

  51. Khlebtsov, N. G. T-matrix method in plasmonics: An overview. J. Quant. Spectrosc. Radiat. Transfer 2013, 123, 184–217.

    Article  Google Scholar 

  52. Kneipp, J.; Kneipp, H.; Kneipp, K. SERS—A single-molecule and nanoscale tool for bioanalytics. Chem. Soc. Rev. 2008, 37, 1052–1060.

    Article  Google Scholar 

  53. Ray, D. E. Pesticides derived from plants and other organisms. In Handbook of Pesticide Toxicology. Hayes, Jr. W. J.; Laws, Jr. E. R., Eds.; Academic Press: New York, 1991; pp. 10–144.

    Google Scholar 

  54. Yang, J.-K.; Kang, H.; Lee, H.; Jo, A.; Jeong, S.; Jeon, S.-J.; Kim, H.-I.; Lee, H.-Y.; Jeong, D. H.; Kim, J.-H. et al. Single-step and rapid growth of silver nanoshells as SERSactive nanostructures for label-free detection of pesticides. ACS Appl. Mater. Interfaces 2014, 6, 12541–12549.

    Article  Google Scholar 

  55. Saute, B.; Narayanan, R. Solution-based direct readout surface enhanced Raman spectroscopic (SERS) detection of ultra-low levels of thiram with dogbone shaped gold nanoparticles. Analyst 2011, 136, 527–532.

    Article  Google Scholar 

  56. Kang, J. S.; Hwang, S. Y.; Lee, C. J.; Lee, M. S. SERS of dithiocarbamate pesticides adsorbed on silver surface; Thiram. Bull. Korean Chem. Soc. 2002, 23, 1604–1610.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Boris Khlebtsov or Nikolai Khlebtsov.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khlebtsov, B., Khanadeev, V. & Khlebtsov, N. Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods. Nano Res. 9, 2303–2318 (2016). https://doi.org/10.1007/s12274-016-1117-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1117-7

Keywords

Navigation