Skip to main content
Log in

Phosphomethylated Polyethyleneimine-immobilized Chelating Resin: Role of Phosphomethylation Rate on Solid-Phase Extraction of Trace Elements

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Chelating resins immobilizing phosphomethylated polyethyleneimine (PM-PEI) with different phosphomethylation (PM) rates were prepared by using different amounts of both phosphonic acid and paraformaldehyde in the phosphomethylation of PEI immobilized on a methacrylate resin as a base resin. The extraction of many elements improved with increasing PM rate; REEs, Be, Fe, Mo, Ti, and V were quantitatively extracted at pH 2. The elution of the elements tended to become difficult with increasing PM rate. When a PM-PEI resin with a PM rate of 0.26 was used, REEs and Be could be eluted using 0.2 mol L−1 EDTA solution adjusted to a pH of 7 and 3 mol L−1 nitric acid, respectively, although the elution of Fe, Mo, Ti, and V was insufficient. The PM-PEI resin could be reused at least 10 times to recover REEs and Be without the influence of any other elements. The PM-PEI resin could be applied to a recovery test using artificial seawater spiked with REEs, except for Sc, Tm, Yb, and Lu, and the separation of the REEs in NIST SRM 1515 Apple Leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Zagorodni, “Ion Exchange Materials: Properties and Applications”, 2016, Elsevier, Amsterdam.

    Google Scholar 

  2. D. Sud, “10.6.2 Chelating Ion Exchangers Containing Amino Phosphonic Acid Functional Group”, in “Ion Exchange Technology I: Applications”, ed. Inamuddin and M. Luqman, 2012, Springer, Dordrecht.

    Google Scholar 

  3. E. J. Zaganiaris, “Ion Exchange Resins and Adsorbents in Chemical Processing”, 2013, Books on Demand, Paris.

    Google Scholar 

  4. S. Kagaya, M. Gemmei-Ide, and Y. Inoue, “Chelating Resins”, in “Encyclopedia of Polymeric Nanomaterials”, ed. S. Kobayashi and K. Müllen, 2014, Springer-Verlag, Berlin, 1.

    Google Scholar 

  5. Y. Kataoka and M. Matsuda, Sumitomo Kagaku Tokushugo, 1982, 55.

    Google Scholar 

  6. S. K. Sahni, R. Van Bennekom, and J. Reedijk, Polyhedron, 1985, 4, 1643.

    Article  CAS  Google Scholar 

  7. M. Matsuda, Nippon Kagaku Kaishi, 1991, 161.

    Google Scholar 

  8. T. Taki, M. Naganuma, and A. Jo, Shigen to Sozai, 1997, 113, 431.

    Article  CAS  Google Scholar 

  9. H. Maeda and H. Yoshida, Kenkyu Hokoku–Kumamoto Kogyo Daigaku, 1989, 14, 153.

    CAS  Google Scholar 

  10. H. Maeda and H. Egawa, J. Appl. Polym. Sci., 1987, 33, 1275.

    Article  CAS  Google Scholar 

  11. M. C. Yebra-Biurrun, A. Bermejo-Barrera, and M. P. Bermejo-Barrera, Anal. Chim. Acta, 1992, 264, 53.

    Article  CAS  Google Scholar 

  12. M. F. Enriquez-Dominguez, M. C. Yebra-Biurrun, and B. M. P. Bermejo, Analyst, 1998, 123, 105.

    Article  CAS  Google Scholar 

  13. M. C. Yebra-Biurrun, Lab. Rob. Autom., 1998, 10, 299.

    Article  CAS  Google Scholar 

  14. M. C. Yebra and R. M. Cespon, Anal. Chim. Acta, 2000, 405, 191.

    Article  CAS  Google Scholar 

  15. L. X. Hou, F. Jiang, and S. Wang, J. Anal. Chem., 2008, 63, 337.

    Article  CAS  Google Scholar 

  16. A. Kadous, M. A. Didi, and D. Villemin, J. Radioanal. Nucl. Chem., 2010, 284, 431.

    Article  CAS  Google Scholar 

  17. A. Jyo, Y. Hamabe, H. Matsuura, Y. Shibata, Y. Fujii, M. Tamada, and A. Katakai, React. Funct. Polym., 2010, 70, 508.

    Article  CAS  Google Scholar 

  18. W. Storck and G. Manecke, Makromol. Chem., 1969, 121, 129.

    Article  CAS  Google Scholar 

  19. A. Sasaki, Y. Echigo, M. Yamao, Y. Suematsu, T. Ishikura, T. Hirotsu, S. Katoh, and K. Sugasaka, Nippon Kaisui Gakkaishi, 1984, 37, 341.

    CAS  Google Scholar 

  20. S. V. Kertman, G. M. Kertman, and Y. A. Leykin, Thermochim. Acta, 1995, 256, 227.

    Article  CAS  Google Scholar 

  21. C.-M. Davidescu, M. Ciopec, A. Negrea, A. Popa, L. Lupa, E.-S. Dragan, R. Ardelean, G. Ilia, and S. Iliescu, Polym. Bull., 2013, 70, 277.

    Article  CAS  Google Scholar 

  22. S. A. Ali, I. W. Kazi, and N. Ullah, Ind. Eng. Chem. Res., 2015, 54, 9689.

    Article  CAS  Google Scholar 

  23. A. S. Tawfik, B. R. Ihsan, and A. A. Shaikh, Sci. Rep., 2017, 7, 4573.

    Article  Google Scholar 

  24. S. Kagaya, E. Maeba, Y. Inoue, W. Kamichatani, T. Kajiwara, H. Yanai, M. Saito, and K. Tohda, Talanta, 2009, 79, 146.

    Article  CAS  PubMed  Google Scholar 

  25. S. Kagaya, S. Nakada, Y. Inoue, W. Kamichatani, H. Yanai, M. Saito, T. Yamamoto, Y. Takamura, and K. Tohda, Anal. Sci., 2010, 26, 515.

    Article  CAS  PubMed  Google Scholar 

  26. Y. Nakashima, Y. Inoue and T. Yamamoto, W. Kamichatani, S. Kagaya, and A. Yamamoto, Anal. Sci., 2012, 28, 1113.

    Article  CAS  PubMed  Google Scholar 

  27. S. Kagaya and Y. Inoue, Anal. Sci., 2014, 30, 35.

    Article  CAS  PubMed  Google Scholar 

  28. Y. Inoue, Bunseki Kagaku, 2015, 64, 811.

    Article  CAS  Google Scholar 

  29. S. Kagaya, T. Kajiwara, M. Gemmei-Ide, W. Kamichatani, and Y. Inoue, Talanta, 2016, 147, 342.

    Article  CAS  PubMed  Google Scholar 

  30. S. Kagaya, T. Katoh, M. Saito, M. Ohki,a R. Shirota, Y. Saeki, T. Kajiwara, S. Nakada, H. Miyazaki, M. Gemmei-Ide, and Y. Inoue, Talanta, 2018, 188, 665.

    Article  CAS  PubMed  Google Scholar 

  31. JIS K 2510, “Lubricants—Determination of Rust-preventing Characteristics”, 1998, Japanese Industrial Standards, Tokyo.

    Google Scholar 

  32. S. Kagaya and T. Yoshimori, Anal. Methods, 2012, 4, 4378.

    Article  CAS  Google Scholar 

  33. R. M. Smith and A. E. Martell, “Critical Stability Constants Volume 2: Amines”, 1975, Plenum Press, New York.

    Book  Google Scholar 

  34. A. E. Martell and R. M. Smith, “Critical Stability Constants Volume 5: First Supplement”, 1982, Springer Science+ Business Media, New York.

    Book  Google Scholar 

  35. M. S. Mohan and E. H. Abbott, J. Coord. Chem., 1978, 8, 175.

    Article  CAS  Google Scholar 

  36. P. Yin, Y. Tian, Z. Wang, R. Qu, X. Liu, Q. Xu, and Q. Tang, Mater. Chem. Phys., 2011, 129, 168.

    Article  CAS  Google Scholar 

  37. Z. Wang, P. Yin, R. Qu, and Q. Xu, J. Appl. Polym. Sci., 2012, 126, 544.

    Article  CAS  Google Scholar 

  38. Z. Wang, P. Yin, Z. Wang, R. Qu, and X. Liu, Ind. Eng. Chem. Res., 2012, 51, 8598.

    Article  CAS  Google Scholar 

  39. T. Chen, C. Yan, Y. Wang, C. Tang, S. Zhou, Y. Zhao, R. Ma, and P. Duan, Environ. Technol., 2015, 36, 2168.

    Article  CAS  PubMed  Google Scholar 

  40. S. Kagaya, Y. Araki, K. Kakehashi, N. Hirai, K. Sakai, and K. Tohda, Anal. Sci., 2008, 24, 1643.

    Article  CAS  PubMed  Google Scholar 

  41. J. Ivanova, S. Korhammer, R. Djingova, H. Heidenreich, and B. Markert, Spectrochim. Acta, Part B, 2001, 56, 3.

    Article  Google Scholar 

  42. S. Tiwari, N. Sharma, and R. Saxena, Anal. Sci., 2016, 32, 1321.

    Article  CAS  PubMed  Google Scholar 

  43. N. Ozbek, G. T. Turan, B. F. Senkal, and S. Akman, Anal. Sci., 2017, 33, 807.

    Article  CAS  PubMed  Google Scholar 

  44. A. Ayala and Y. Takagai, Anal. Sci., 2018, 34, 387.

    Article  CAS  PubMed  Google Scholar 

  45. M. Furukawa, M. Matsueda, and Y. Takagai, Anal. Sci., 2018, 34, 471.

    Article  CAS  PubMed  Google Scholar 

  46. K. Hagiwara, Y. Koike, M. Aizawa, and T. Nakamura, Anal. Sci., 2018, 34, 1309.

    Article  CAS  PubMed  Google Scholar 

  47. H. Mizuguchi, R. Ishida, Y. Kouno, T. Tachibana, T. Honda, T. Kijima, Y. Yamamoto, and T. Takayanagi, Anal. Sci., 2018, 34, 907.

    Article  CAS  PubMed  Google Scholar 

  48. T. Yabutani, S. Kishibe, M. Kamimura, K. Nozoe, Y. Yamada, and T. Takayanagi, Anal. Sci., 2018, 34, 725.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Ms. Eri Koori for her support for elemental analysis. This work was partly supported by a Grantin-Aid for Scientific Research from the Japan Society for the Promotion of Science (No. 16K00611).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigehiro Kagaya.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kagaya, S., Ikeda, R., Kajiwara, T. et al. Phosphomethylated Polyethyleneimine-immobilized Chelating Resin: Role of Phosphomethylation Rate on Solid-Phase Extraction of Trace Elements. ANAL. SCI. 35, 413–419 (2019). https://doi.org/10.2116/analsci.18P462

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.18P462

Keywords

Navigation