Skip to main content
Log in

Correction of Mass Spectrometric Interferences for Rapid and Precise Isotope Ratio Measurements of Calcium from Biological Samples Using ICP-Mass Spectrometry

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Stable isotope compositions of calcium (Ca) provide useful information concerning metabolic alterations of Ca in human and animal bodies. For the measurements of Ca isotope ratio, great care must be taken for the mass spectrometric interferences on Ca isotopes (42Ca+, 43Ca+, and 44Ca+) from doubly charged strontium (Sr) ions (84Sr2+, 86Sr2+, and 88Sr2+). To obtain reliable stable isotope data of Ca, we developed a new correction technique for the mass spectrometric interferences by mSr2+ ions based on standard addition method. Addition of a small fraction of Sr onto a Ca solution shifts the measured Ca isotope ratios on a three-isotope diagram (i.e., δ44Ca and δ43Ca) along a mixing line defined by both the true Ca isotope ratio and the Sr isotope ratio. Therefore, the true Ca isotope ratio of a sample can be obtained as the crossover point of mass dependent fractionation line and the mixing line. With the present correction technique, precise and accurate isotope ratio measurements can be made on analyte solutions having a CSr/CCa ratio (concentration ratio) of 0.03, which is 6 times higher than the CSr/CCa ratio applicable to the conventional correction technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Hirata, Geochim. Cosmochim. Acta, 1997, 61, 4439.

    Article  CAS  Google Scholar 

  2. J. Skulan and D. J. DePaolo, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 13709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. T. Hirata, M. Tanoshima, A. Suga, Y. Tanaka, Y. Nagata, A. Shinohara, and M. Chiba, Anal. Sci., 2008, 24, 1501.

    Article  CAS  PubMed  Google Scholar 

  4. Y. Tanaka, N. Yajima, Y. Higuchi, H. Yamato, and T. Hirata, Metallomics, 2017, 9, 1745.

    Article  CAS  PubMed  Google Scholar 

  5. J. L. L. Morgan, J. L. Skulan, G. W. Gordon, S. J. Romaniello, S. M. Smith, and A. D. Anbar, Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 9989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. J. Skulan, T. Bullen, A. D. Anbar, J. E. Puzas, L. Shackelford, A. LeBlanc, and S. M. Smith, Clin. Chem., 2007, 53, 1155.

    Article  CAS  PubMed  Google Scholar 

  7. J. L. Birck, Chem. Geol., 1986, 56, 73.

    Article  CAS  Google Scholar 

  8. T. Tacail, E. Albalat, P. Télouk, and V. Balter, J. Anal. At. Spectrom., 2014, 29, 529.

    Article  CAS  Google Scholar 

  9. W. A. Russell and D. A. Papanastassiou, Anal. Chem., 1978, 50, 1151.

    Article  CAS  Google Scholar 

  10. T. Oi, N. Morioka, H. Ogino, H. Kakihana, and M. Hosoe, Sep. Sci. Technol., 1993, 28(11&12), 1971.

    Article  CAS  Google Scholar 

  11. X. K. Zhu, Y. Guo, R. J. P. Williams, R. K. O’Nions, A. Matthews, N. S. Belshaw, G. W. Canters, E. C. de Waal, U. Weser, B. K. Burgess, and B. Salvato, Earth Planet. Sci. Lett., 2002, 200, 47.

    Article  CAS  Google Scholar 

  12. T. Hirata, J. Anal. At. Spectrom., 2002, 17, 204.

    Article  CAS  Google Scholar 

  13. M. E. Wieser, D. Buhl, C. Bouman, and J. Schwieters, J. Anal. At. Spectrom., 2004, 19, 844.

    Article  CAS  Google Scholar 

  14. K. R. Ludwig, Isoplot/Ex 3.70, A Geochronological Toolkit for Microsoft Excel, Berkeley Geochronological Center, Berkely, Special Publication, 2008, 4, 76.

    Google Scholar 

  15. T. Ohno and T. Hirata, Anal. Sci., 2007, 23, 1275.

    Article  CAS  PubMed  Google Scholar 

  16. K. J. Knudson, H. M. Williams, J. E. Buikstra, P. D. Tomczak, G. W. Gordon, and A. D. Anbar, J. Arch. Sci., 2010, 37, 2352.

    Article  Google Scholar 

  17. H.-C. Chao, C.-F. You, H.-C. Liu, and C.-H. Chung, Geochim. Cosmochim. Acta, 2013, 114, 29.

    Article  Google Scholar 

  18. S. de Villiers, Earth Planet. Sci Lett., 1999, 171, 623.

    Article  Google Scholar 

  19. G. Bayon, C. Pierre, J. Etoubleau, M. Voisset, E. Cauquil, T. Marsset, N. Sultan, E. Le Drezen, and Y. Fouquet, Mar. Geol., 2007, 241, 93.

    Article  Google Scholar 

  20. C. Alibert and M. T. McCulloch, Paleoceanography, 1997, 12, 345.

    Article  Google Scholar 

  21. R. Bouillon, Calcif. Tissue Int., 1991, 49, 155.

    Article  CAS  PubMed  Google Scholar 

  22. M. B. Channon, G. W. Gordon, J. L. L. Morgan, J. L. Skulan, S. M. Smith, and A. D. Anbar, Bone, 2015, 77, 69.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by a Grant-in-Aid for Scientific Research KAKENHI to T. H. (A26247094) and Y. M.-T. (17K01377) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Ki Tanaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, YK., Mikuni-Takagaki, Y., Hidaka, K. et al. Correction of Mass Spectrometric Interferences for Rapid and Precise Isotope Ratio Measurements of Calcium from Biological Samples Using ICP-Mass Spectrometry. ANAL. SCI. 35, 793–798 (2019). https://doi.org/10.2116/analsci.18P440

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.18P440

Keywords

Navigation