Skip to main content
Log in

Simultaneous Determination of Inorganic Anions and Cations in Water and Biological Samples by Capillary Electrophoresis with a Capacitive Coupled Contactless Conductivity Detector Using Capillary Filling Method

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

An analytical method for concurrent analysis of inorganic anions and cations has been developed using a capillary electrophoresis (CE)-capacitively coupled contactless conductivity detector (C4D) system. Although hydrodynamic and electrokinetic injection techniques have been widely used in CE, we employed a capillary filling method (CFM) for the analysis of inorganic ions. The procedure is relatively simple and has the advantage that CMF does not require pressure control and vial exchange. Three anions (chloride, sulfate, nitrate) and five cations (ammonium, potassium, sodium, magnesium, calcium) were successfully separated and detected at ppm levels within 80 s using a 9 mM histidine/15 mM malic acid (pH 3.6) containing 50 mM N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate as background electrolyte. Applying this analytical condition, the electroosmotic flow is negligible and anions and cations were migrated concurrently to different polarities according to their electrophoretic mobility. Obtained raw data showed stepwise increases in detected conductivity due to the migration of sample components, which expresses as peak profiles by differentiation of electropherograms. The RSD values of the peak area and migration times for the anions and cations were satisfactory and were less than 5.15 and 2.04%, respectively. The developed method was applied for the analysis of inorganic anions and cations in commercial mineral waters, tap water, urine, and exhaled breath condensate. These results indicate that the CE-C4D system with CFM is suitable for the rapid analysis of inorganic anions and cations in various samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Zemann, E. Schnell, D. Volgger, and G. K. Bonn, Anal. Chem., 1998, 70, 563.

    Article  CAS  PubMed  Google Scholar 

  2. J. A. Fracassi da Silva and C. L. do Lago, Anal. Chem., 1998, 70, 4339.

    Article  Google Scholar 

  3. M. Greguš, F. Foret, and P. Kubán, J. Chromatogr. A, 2016, 1427, 177.

    Article  PubMed  Google Scholar 

  4. L. Vitali, V. T. Fávere, and G. A. Micke, J. Chromatogr. A, 2011, 1218, 2327.

    Article  CAS  PubMed  Google Scholar 

  5. L. Strieglerová, P. Kubán, and P. Bocek, Electrophoresis, 2011, 32, 1182.

    Article  PubMed  Google Scholar 

  6. W. Pormsila, R. Morand, S. Krähenbühl, and P. C. Hauser, Electrophoresis, 2011, 32, 884.

    Article  CAS  PubMed  Google Scholar 

  7. D. T. R. Vidal, M. A. Augelli, G. M. Hotta, F. S. Lopes, and C. L. do Lago, Electrophoresis, 2011, 32, 896.

    Article  CAS  PubMed  Google Scholar 

  8. A. Makrlíková, F. Opekar, and P. Tu˚ma, Electrophoresis, 2015, 36, 1962.

    Article  PubMed  Google Scholar 

  9. M. Greguš, F. Foret, D. Kindlová, E. Pokojová, M. Plutinský, M. Doubková, Z. Merta, I. Binková, J. Skric ková, and P. Kubán, J. Breath Res., 2015, 9, 027107.

    Article  PubMed  Google Scholar 

  10. I. J. Koenka, T. D. Mai, P. C. Hauser, and J. Saiz, Anal. Methods, 2016, 8, 1452.

    Article  CAS  Google Scholar 

  11. J. Sáiz, I. J. Koenka, T. D. Mai, P. C. Hauser, and C. García-Ruiz, TrAC, Trends Anal. Chem., 2014, 62, 162.

    Article  Google Scholar 

  12. T. Takeuchi, A. Sedyohutomo, and L. W. Lim, Anal. Sci., 2009, 25, 851.

    Article  CAS  PubMed  Google Scholar 

  13. M. C. Marra, R. R. Cunha, D. T. R. Vidal, R. A. A. Munoz, L. do Lago, and E. M. Richter, J. Chromatogr. A, 2014, 1327, 149.

    Article  CAS  PubMed  Google Scholar 

  14. T. D. Mai and P. C. Hauser, Talanta, 2011, 84, 1228.

    Article  CAS  PubMed  Google Scholar 

  15. A. Padarauskas, V. Olšauskaitë, and G. Schwedt, J. Chromatogr. A, 1998, 800, 369.

    Article  CAS  Google Scholar 

  16. F. Priego-Capote and M. D. de Luque Castro, Electrophoresis, 2004, 25, 4074.

    Article  CAS  PubMed  Google Scholar 

  17. T. D. Mai and P. C. Hauser, J. Chromatogr. A, 2012, 1267, 266.

    Article  CAS  PubMed  Google Scholar 

  18. T. T. T. Pham, T. D. Mai, T. D. Nguyen, J. Sáiz, H. V. Pham, and P. C. Hauser, Anal. Chim. Acta, 2014, 841, 77.

    Article  CAS  PubMed  Google Scholar 

  19. Z. Huang, M. Yang, H. You, and Y. Xie, Anal. Sci., 2018, 34, 801.

    Article  CAS  PubMed  Google Scholar 

  20. A. Tiselius, Trans. Faraday Soc., 1937, 33, 524.

    Article  CAS  Google Scholar 

  21. A. Tiselius and E. A. Kabat, J. Exp. Med., 1939, 69, 119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. E. A. Strychalski, A. C. Henry, and D. Ross, Anal. Chem., 2011, 83, 6316.

    Article  CAS  PubMed  Google Scholar 

  23. D. Ross, Electrophoresis, 2010, 31, 3650.

    Article  CAS  PubMed  Google Scholar 

  24. D. Ross, Electrophoresis, 2010, 31, 3658.

    Article  CAS  PubMed  Google Scholar 

  25. W. G. Robertson, M. Peacock, and B. E. Nordin, Clin. Sci., 1968, 34, 579.

    CAS  PubMed  Google Scholar 

  26. P. Kubán, E. G. Kobrin, and M. Kaljurand, J. Chromatogr. A, 2012, 1267, 239.

    Article  PubMed  Google Scholar 

  27. Y. Tanaka, S. Wakida, and K. Saito, Chromatography, 2013, 34, 89.

    CAS  Google Scholar 

  28. W. Jiang, J. N. Awasum, and K. Irgum, Anal. Chem., 2003, 75, 2768.

    Article  CAS  PubMed  Google Scholar 

  29. T. Okada, J. Chromatogr. A, 1999, 834, 73.

    Article  CAS  Google Scholar 

  30. C. P. Kubán, C. J. Evenhuis, M. Macka, P. R. Haddad, and P. Hauser, Electroanalysis, 2006, 18, 1289.

    Article  Google Scholar 

  31. S. A. Kharitonov and P. J. Barnes, Am. J. Respir. Crit. Care Med., 2001, 163, 1693.

    Article  CAS  PubMed  Google Scholar 

  32. P. Montuschi and P. J. Barnes, Trends Pharmacol. Sci., 2002, 23, 232.

    Article  CAS  PubMed  Google Scholar 

  33. R. Do, K. H. Bartlett, W. Chu, H. Dimich-Ward, and S. M. Kennedy, Respir. Med., 2008, 102, 457.

    Article  PubMed  Google Scholar 

  34. S. A. Kharitonov and P. J. Barnes, Biomarkers, 2002, 7, 1.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant Nos. 15K18852, 16K08209 and 17K15439). This work was also partly supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) program for the Strategic Research Foundation at Private Universities, 2014 - 2018 (S1411037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachio Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, S., Fujiwara, H., Maruyama, K. et al. Simultaneous Determination of Inorganic Anions and Cations in Water and Biological Samples by Capillary Electrophoresis with a Capacitive Coupled Contactless Conductivity Detector Using Capillary Filling Method. ANAL. SCI. 35, 295–300 (2019). https://doi.org/10.2116/analsci.18P422

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.18P422

Keywords

Navigation