Skip to main content

Simultaneous Determination of Atenolol and Amiloride by Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection (C4D)

  • Protocol
  • First Online:
Clinical Applications of Capillary Electrophoresis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 919))

Abstract

Capillary electrophoresis coupled with a capacitively coupled contactless conductivity detector (CE-C4D) has been employed for the determination of the β-blocker drugs (atenolol and amiloride) in pharmaceutical formulations. 150 mM acetic acid was used as background electrolyte. The influence of several factors (detector excitation voltage and frequency, buffer concentration, applied voltage, capillary temperature, and injection time) was studied. Non-UV absorbing l-valine was used as an internal standard; the analytes were all separated in less than 7 min. The separation was carried out in normal polarity mode at 28 °C, 25 kV, and using hydrodynamic injection (25 s). The separation was effected in a bare fused-silica capillary 75 μm × 52 cm. The CE-C4D method was validated with respect to linearity, limit of detection and quantification, accuracy, precision, and selectivity. Calibration curves were linear over the range 5–250 μg mL−1 for the studied analytes. The relative standard deviations of intra- and inter-day precisions of migration times and corrected peak areas were less than 6.0%. The method showed good precision and accuracy and was successfully applied to the simultaneous determination of the β-blocker drugs in different pharmaceutical tablets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balesteros MR, Faria AF, de Oliveira MAL (2007) Determination of losartan associated with chlorthalidone or hydrochlorothiazide in capsules by capillary zone electrophoresis. J Braz Chem Soc 18:554–558

    Article  CAS  Google Scholar 

  2. Moraes CF et al (2008) A common polymorphism in the rennin angiotensin system is associated with differential outcome of antihypertensive pharmacotherapy prescribed to Brazilian older women. Clin Chim Acta 396:70–75

    Article  PubMed  CAS  Google Scholar 

  3. Johnson RD, Lewis RJ (2006) Quantitation of atenolol, metoprolol, and propranolol in postmortem human fluid and tissue specimens via LC/APCI-MS. Forensic Sci Int 156:106–117

    Article  PubMed  CAS  Google Scholar 

  4. Maguregui MI, Alonso RM, Jimenez RM (1997) Capillary zone electrophoretic method for the quantitative determination of the β- blocker atenolol in human urine. J Liq Chromatogr Relat Technol 20:3377–3387

    Article  CAS  Google Scholar 

  5. Arias R et al (2001) Determination of the β-blocker atenolol in plasma by capillary zone electrophoresis. J Chromatogr A 916:297–304

    Article  PubMed  CAS  Google Scholar 

  6. Maguregui MI, Alonso RM, Jiménez RM (1998) Simultaneous determination of the β-blocker atenolol and several complementary antihypertensive agents in pharmaceutical formulations and urine by capillary zone electrophoresis. J Chromatogr Sci 36:516–522

    PubMed  CAS  Google Scholar 

  7. Al Azzam K et al (2009) Simultaneous determination of atenolol and chlorthalidone in pharmaceutical preparations by capillary—zone electrophoresis. Anal Lett 42:1458–1470

    Article  CAS  Google Scholar 

  8. Ervik M, Gustavii K (1974) Application of the extractive alkylation technique to the gas chromatographic determination of chlorthalidone in plasma in nanogram quantities. Anal Chem 46:39–42

    Article  PubMed  CAS  Google Scholar 

  9. Degen PH, Schweizer A (1977) Quantitative determination of drugs in biological materials by means of extractive alkylation and gas–liquid chromatography. J Chromatogr A 142:549–557

    Article  CAS  Google Scholar 

  10. Dadgar D, Kelly MT (1988) Determination of chlorthalidone in human plasma by reversed-phase micellar liquid chromatography. Analyst 113:1223–1227

    Article  PubMed  CAS  Google Scholar 

  11. Muirhead DC, Christie RB (1987) Simple, sensitive and selective high-performance liquid chromatographic method for analysis of chlorthalidone in whole blood. J Chromatogr 416:420–425

    Article  PubMed  CAS  Google Scholar 

  12. Giachetti C et al (1997) Simultaneous determination of atenolol and chlorthalidone in plasma by high-performance liquid chromatography application to pharmacokinetics studies in man. J Chromatogr B 698:187–194

    Article  CAS  Google Scholar 

  13. Rapado-Martinez I, Garcia-Alvarez-Coque MC, Villanueva-Camanas RM (1997) Liquid chromatographic procedure for the evaluation of β-blockers in pharmaceuticals using hybrid mobile phases. J Chromatogr A 765:221–231

    Article  CAS  Google Scholar 

  14. El-Gindy A, Sallam S, Abdel-salam RA (2008) HPLC method for the simultaneous determination of atenolol and chlorthalidone in human breast milk. J Sep Sci 31:677–682

    Article  PubMed  CAS  Google Scholar 

  15. Sa’sa SI, Jalal IM, Khalil HS (1988) Determination of atenolol combinations with hydrochlorothiazide and chlorthalidone in tablets formulations by reverse-phase HPLC. J Liq Chromatogr Relat Technol 11:1673–1696

    Article  Google Scholar 

  16. Kubáň P, Abad-Villar EM, Hauser PC (2006) Evaluation of contactless conductivity detection for the determination of UV absorbing and non-UV absorbing species in reversed-phase high-performance liquid chromatography. J Chromatogr A 1107:159–164

    Article  PubMed  Google Scholar 

  17. Salem H (2004) High-performance thin-layer chromatography for the determination of certain antihypertensive mixtures. Sci Pharm 72:157–174

    CAS  Google Scholar 

  18. Bonazzi D et al (1996) Derivative UV spectrophotometric determination of atenolol and metoprolol in single- and multi-component pharmaceutical dosage forms. II Farmaco 51:733–738

    CAS  Google Scholar 

  19. Wehner W (2000) Determination of atenolol/chlortalidone during dissolution of tablets with UV multicomponent analysis. Pharmazie 55:543–544

    PubMed  CAS  Google Scholar 

  20. Vetuschi C, Ragno G (1990) Fourth UV derivative spectrophotometry for the simultaneous assay of atenolol and chlorthalidone in pharmaceuticals. Int J Pharm 65:177–181

    Article  CAS  Google Scholar 

  21. Ferraro MCF, Castellano PM, Kaufman TS (2003) Chemometrics-assisted simultaneous determination of atenolol and chlorthalidone in synthetic binary mixtures and pharmaceutical dosage forms. Anal Bioanal Chem 377:1159–1164

    Article  PubMed  CAS  Google Scholar 

  22. Mohamed AEL-MI, Salem H (2005) Determination of antihypertensive mixtures by use of a chemometrics-assisted spectrophotometric method. Anal Bioanal Chem 382:1066–1072

    Article  CAS  Google Scholar 

  23. El-Gindy A, Emara S, Mostafa A (2005) HPLC and chemometric-assited spectrophotometric methods for simultaneous determination of atenolol, amiloride hydrochloride and chlorthalidone. II Farmaco 60:269–278

    Article  CAS  Google Scholar 

  24. Ferraro MCF, Castellano PM, Kaufman TS (2004) Chemometric determination of amiloride hydrochloride, atenolol, hydrochlorothiazide and timolol maleate in synthetic mixtures and pharmaceutical formulations. J Pharm Biomed Anal 34:305–314

    Article  PubMed  CAS  Google Scholar 

  25. Felix FS et al (2006) Determination of salbutamol in syrups by capillary electrophoresis with contactless conductivity detection (CE-C4D). J Pharm Biomed Anal 40:1288–1292

    Article  PubMed  CAS  Google Scholar 

  26. Yang Z, Qin W (2009) Separation of fluoroquinolones in acidic buffer by capillary electrophoresis with contactless conductivity detection. J Chromatogr A 1216:5327–5332

    Article  PubMed  CAS  Google Scholar 

  27. olínová V, Kaika V (2006) Recent applications of conductivity detection in capillary and chip electrophoresis. J Sep Sci 29:1743–1762

    Article  Google Scholar 

  28. Fan Y et al (2007) A rapid CE-potential gradient detection method for determination of quinolones. Electrophoresis 28:4101–4107

    Article  PubMed  CAS  Google Scholar 

  29. Tanyanyiwa J, Hauser PC (2002) High-voltage contactless conductivity detection of metal ions in capillary electrophoresis. Electrophoresis 23:3781–3786

    Article  PubMed  CAS  Google Scholar 

  30. Kubáň P, Hauser PC (2008) A review of the recent achievements in capacitively coupled contactless conductivity detection. Anal Chim Acta 607:15–29

    Article  PubMed  Google Scholar 

  31. Kubáň P, Hauser PC (2009) Ten years of axial capacitively coupled contactless conductivity detection for CZE—a review. Electrophoresis 30:176–188

    Article  PubMed  Google Scholar 

  32. ICH (1995) Topic Q2A, Guideline for Industry: Text on Validation of Analytical Procedures (Online). Available from World Wide Web:http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm073381.pdf. Accessed 5 March 2009

  33. Pormsila W, Krähenbühl S, Hauser PC (2009) Capillary electrophoresis with contactless conductivity detection for uric acid determination in biological fluids. Anal Chim Acta 636:224–228

    Article  PubMed  CAS  Google Scholar 

  34. Chen CG et al (2009) AC impedance characteristics of capacitively coupled contactless conductivity detector cell in capillary electrophoresis. Electrochim Acta 54:6959–6962

    Article  CAS  Google Scholar 

  35. Nussbaumer S et al (2009) Determination of suxamethonium in a pharmaceutical formulation by capillary electrophoresis with contactless conductivity detection (CE-C4D). J Pharm Biomed Anal 49:333–337

    Article  PubMed  CAS  Google Scholar 

  36. McMurry J (1996) Organic chemistry. Edmonton, Canada

    Google Scholar 

  37. Barron JJ, Ashton C (2007) The effect of temperature on conductivity measurement (Online). Available from World Wide Web:http://www.camlab.co.uk//sitefiles/Tech_papers/TempCondMeas.pdf. Accessed 5 March 2009

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Y. Aboul-Enein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Azzam, K.M.A., Aboul-Enein, H.Y. (2013). Simultaneous Determination of Atenolol and Amiloride by Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection (C4D). In: Phillips, T., Kalish, H. (eds) Clinical Applications of Capillary Electrophoresis. Methods in Molecular Biology, vol 919. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-029-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-029-8_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-028-1

  • Online ISBN: 978-1-62703-029-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics