Skip to main content
Log in

A hyperbranched polyethylenimine functionalized stationary phase for hydrophilic interaction liquid chromatography

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A hyperbranched stationary phase for hydrophilic interaction liquid chromatography (HILIC) has been prepared by grafting polyethylenimine (PEI) onto silica gel (termed as PEI-Sil). Rich primary, secondary, and tertiary amino groups associated with PEI render its good hydrophility. More importantly, the hyperbranched structure of PEI molecule is greatly helpful in improving interaction with polar analytes. For several kinds of model polar compounds, including organic acids, nucleosides, nucleic acid bases, amino acids, cephalosporins, and non-reducing sugars, PEI-Sil demonstrated excellent separation performance in terms of running stability, reproducibility, and separation efficiency (e.g., plate count ~74,000/m). In addition, PEI-Sil also exhibited much better separation selectivity toward inorganic anions when operated in the mode of ion chromatography relative to a commercial amino propyl-bonded column.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alpert AJ. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr A. 1990;499:177–96.

    Article  CAS  Google Scholar 

  2. Marrubini G, Mendoza BEC, Massolini G. Separation of purine and pyrimidine bases and nucleosides by hydrophilic interaction chromatography. J Sep Sci. 2010;33:803–16.

    Article  CAS  Google Scholar 

  3. Karatapanis AE, Fiamegos YC, Stalikas CD. A revisit to the retention mechanism of hydrophilic interaction liquid chromatography using model organic compounds. J Chromatogr A. 2011;1218:2871–9.

    Article  CAS  Google Scholar 

  4. Jandera P, Hájek T. Utilization of dual retention mechanism on columns with bonded PEG and diol stationary phases for adjusting the separation selectivity of phenolic and flavone natural antioxidants. J Sep Sci. 2009;32:3603–19.

    Article  CAS  Google Scholar 

  5. Sowell J, Fuqua M, Wood T. Quantification of total and free carnitine in human plasma by hydrophilic interaction liquid chromatography tandem mass spectrometry. J Chromatogr Sci. 2011;49:463–8.

    Article  CAS  Google Scholar 

  6. Periat A, Krull IS, Guillarme D. Applications of hydrophilic interaction chromatography to amino acids, peptides, and proteins. J Sep Sci. 2015;38:357–67.

    Article  CAS  Google Scholar 

  7. Peng XT, Liu T, Ji SX, Feng YQ. Preparation of a novel carboxyl stationary phase by "thiol-ene" click chemistry for hydrophilic interaction chromatography. J Sep Sci. 2013;36:2571–7.

    Article  CAS  Google Scholar 

  8. Shen G, Zhang F, Yang B, Chu C, Liang X. A novel amide stationary phase for hydrophilic interaction liquid chromatography and ion chromatography. Talanta. 2013;115:129–32.

    Article  CAS  Google Scholar 

  9. Ji S, Zheng Y, Zhang F, Liang X, Yang B. A polyvinyl alcohol-coated silica gel stationary phase for hydrophilic interaction chromatography. Analyst. 2015;140:6250–3.

    Article  CAS  Google Scholar 

  10. Liu Y, Du Q, Yang B, Zhang F, Chu C, Liang X. Silica based click amino stationary phase for ion chromatography and hydrophilic interaction liquid chromatography. Analyst. 2012;137:1624–8.

    Article  CAS  Google Scholar 

  11. Wu S, Li X, Zhang F, Jiang G, Liang X, Yang B. An arginine functionalized stationary phase for hydrophilic interaction liquid chromatography. Analyst. 2015;140:3921–4.

    Article  CAS  Google Scholar 

  12. Zhang F, Shen G, Ji S, Yang B. Recent advances of stationary phases for hydrophilic interaction liquid chromatography and ion chromatography. J Liq Chromatogr Relat Technol. 2015;38:349–52.

    Article  CAS  Google Scholar 

  13. Dinh NP, Jonsson T, Irgum K. Probing the interaction mode in hydrophilic interaction chromatography. J Chromatogr A. 2011;1218:5880–91.

    Article  CAS  Google Scholar 

  14. Erim FB, Cifuentes A, Poppe H, Kraak JC. Performance of a physically adsorbed high-molecular-mass polyethyleneimine layer as coating for the separation of basic proteins and peptides by capillary electrophoresis. J Chromatogr A. 1995;708:356–61.

    Article  Google Scholar 

  15. Towns JK, Regnier FE. Polyethyleneimine-bonded phases in the separation of proteins by capillary electrophoresis. J Chromatogr A. 1990;516:69–78.

    Article  CAS  Google Scholar 

  16. Nutku MS, Erim FB. Polyethyleneimine-coated capillary electrophoresis capillaries for the analysis of organic acids with an application to beverages. J Microcolumn Sep. 1999;11:541–3.

    Article  CAS  Google Scholar 

  17. Nutku MS, Erim FB. The use of cationic polymer for the separation of inorganic anions by capillary electrophoresis. J High Resolut Chromatogr. 1998;21:505–8.

    Article  CAS  Google Scholar 

  18. Sedyohutomo A, Suzuki H, Fujimoto C. Determination of inorganic anions by capillary ion-exchange chromatography using polyethylenimine-coated octadecyl-bonded phases. Anal Sci. 2012;28:625–9.

    Article  CAS  Google Scholar 

  19. Alpert AJ, Regnier FE. Preparation of a porous microparticulate anion-exchange chromatography support for proteins. J Chromatogr. 1979;185:375–92.

    Article  CAS  Google Scholar 

  20. Rounds M, Kopaciewicz W, Regnier F. Factors contributing to intrinsic loading capacity in silica-based packing materials for preparative anion-exchange protein chromatography. J Chromatogr A. 1986;362:187–96.

    Article  CAS  Google Scholar 

  21. Pearson J, Regnier F. High-performance anion-exchange chromatography of oligonucleotides. J Chromatogr A. 1983;255:137–49.

    Article  CAS  Google Scholar 

  22. Drager R, Regnier F. High-performance anion-exchange chromatography of oligonucleotides. Anal Biochem. 1985;145:47–56.

    Article  CAS  Google Scholar 

  23. Murakami Y, Sugo K, Hirano M, Okuyama T. Surface chemical analysis and chromatographic characterization of polyethylenimine-coated hydroxyapatite with various amount of polyethylenimine. Talanta. 2011;85:1298–303.

    Article  CAS  Google Scholar 

  24. Celebi B, Gokaltun A, Arman E, Evirgen OA, Tuncel A. Polyethylenimine attached-poly (3-chloro-2-hydroxypropyl methacrylate-co-ethylene dimethacrylate) monosized-porous microspheres as a new separation medium for polar compounds. Colloids Surf A. 2014;441:629–37.

    Article  CAS  Google Scholar 

  25. Lv YQ, Lin ZX, Svec F. Hypercrosslinked large surface area porous polymer monoliths for hydrophilic interaction liquid chromatography of small molecules featuring zwitterionic functionalities attached to gold nanoparticles held in layered structure. Anal Chem. 2012;84:8457–60.

    Article  CAS  Google Scholar 

  26. Jiang LW, Jin Y, Marcus RK. Polyethylenimine modified poly(ethylene terephthalate) capillarychanneled-polymer fibers for anion exchange chromatography of proteins. J Chromatogr A. 2015;1410:200–9.

    Article  CAS  Google Scholar 

  27. Diao XF, Zhang FF, Feng F, Yang BC, Liang XM, Chu XM. Preparation and evaluation of anion exchange open tubular column. Talanta. 2012;101:91–5.

    Article  CAS  Google Scholar 

  28. Jin G, Guo Z, Zhang F, Xue X, Jin Y, Liang X. Study on the retention equation in hydrophilic interaction liquid chromatography. Talanta. 2008;76:522–7.

    Article  CAS  Google Scholar 

  29. Hemström P, Irgum K. Hydrophilic interaction chromatography. J Sep Sci. 2006;29:1784–821.

    Article  Google Scholar 

  30. McCalley DV. Study of the selectivity, retention mechanisms and performance of alternative silica-based stationary phases for separation of ionised solutes in hydrophilic interaction chromatography. J Chromatogr A. 2010;1217:3408–17.

    Article  CAS  Google Scholar 

  31. Guo Y, Gaiki S. Retention and selectivity of stationary phases for hydrophilic interaction chromatography. J Chromatogr A. 2011;1218:5920–38.

    Article  CAS  Google Scholar 

  32. Ji S, Zhang F, Wu S, Yang B, Liang X. Facile preparation of polyvinyl alcohol coated SiO2 stationary phases for high performance liquid chromatography. Analyst. 2014;139:5594–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was sponsored by the National Natural Science Foundation of China (No. 21322502, 21477037). It also thanks for the support from outstanding young talent cultivation fund of ECUST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingcheng Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1140 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., Hou, Y., Zhang, F. et al. A hyperbranched polyethylenimine functionalized stationary phase for hydrophilic interaction liquid chromatography. Anal Bioanal Chem 408, 3633–3638 (2016). https://doi.org/10.1007/s00216-016-9446-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9446-7

Keywords

Navigation