Skip to main content
Log in

The local index density of the perturbed de Rham complex

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

A perturbation of the de Rham complex was introduced by Witten for an exact 1-form Θ and later extended by Novikov for a closed 1-form on a Riemannian manifold M. We use invariance theory to show that the perturbed index density is independent of Θ; this result was established previously by J. A. Álvarez López, Y. A. Kordyukov and E. Leichtnam (2020) using other methods. We also show the higher order heat trace asymptotics of the perturbed de Rham complex exhibit nontrivial dependence on Θ. We establish similar results for manifolds with boundary imposing suitable boundary conditions and give an equivariant version for the local Lefschetz trace density. In the setting of the Dolbeault complex, one requires Θ to be a \(\overline \partial \) closed 1-form to define a local index density; we show in contrast to the de Rham complex, that this exhibits a nontrivial dependence on Θ even in the setting of Riemann surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Álvarez López, Y. A. Kordyukov, E. Leichtnam: A trace formula for foliated flow (working paper). Summer Conference on Topology and Its Applications 20. University of Dayton, Dayton, 2017, 72 pages.

    Google Scholar 

  2. M. Atiyah, R. Bott, V. K. Patodi: On the heat equation and the index theorem. Invent. Math. 13 (1973), 279–330; errata ibid. 28 (1975), 277–280.

    Article  MathSciNet  Google Scholar 

  3. M. Atiyah, V. K. Patodi, I. M. Singer: Spectral asymmetry and Riemannian geometry. Bull. Lond. Math. Soc. 5 (1973), 229–234.

    Article  MathSciNet  Google Scholar 

  4. N. Berline, E. Getzler, M. Vergne: Heat Kernels and Dirac Operators. Grundlehren Text Editions. Springer, Berlin, 2004.

    MATH  Google Scholar 

  5. J.-M. Bismut, W. Zhang: An Extension of a Theorem by Cheeger and Müller. Astérisque 205. Société Mathématique de France, Paris, 1992.

    MATH  Google Scholar 

  6. M. Braverman, M. Farber: Novikov type inequalities for differential forms with nonisolated zeros. Math. Proc. Camb. Philos. Soc. 122 (1997), 357–375.

    Article  Google Scholar 

  7. D. Burghelea, S. Haller: On the topology and analysis of a closed one form. I. (Novikov’s theory revisited). Essays on Geometry and Related Topics. Volume 1. Monographs of L’Enseignement Mathématique 38. Enseignement Mathématique, Geneva, 2001, pp. 133–175.

    MathSciNet  MATH  Google Scholar 

  8. D. Burghelea, S. Haller: Dynamics, Laplace transform and spectral geometry. J. Topol. 1 (2008), 115–151.

    Article  MathSciNet  Google Scholar 

  9. S.-S. Chern: A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds. Ann. Math. (2) 45 (1944), 741–752.

    Article  MathSciNet  Google Scholar 

  10. P. B. Gilkey: Curvature and the eigenvalues of the Dolbeault complex for Kaehler manifolds. Adv. Math. 11 (1973), 311–325.

    Article  MathSciNet  Google Scholar 

  11. P. B. Gilkey: Curvature and the eigenvalues of the Laplacian for elliptic complexes. Adv. Math. 10 (1973), 344–382.

    Article  MathSciNet  Google Scholar 

  12. P. B. Gilkey: The boundary integrand in the formula for the signature and Euler characteristic of a Riemannian manifold with boundary. Adv. Math. 15 (1975), 334–360.

    Article  MathSciNet  Google Scholar 

  13. P. B. Gilkey: Lefschetz fixed point formulas and the heat equation. Partial Differential Equations and Geometry. Lecture Notes in Pure and Applied Mathematics 48. Marcel Dekker, New York, 1979, pp. 91–147.

    Google Scholar 

  14. P. B. Gilkey: Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem. Studies in Advanced Mathematics. CRC Press, Boca Raton, 1995.

    MATH  Google Scholar 

  15. P. B. Gilkey: Asymptotic Formulae in Spectral Geometry. Studies in Advanced Mathematics. Chapman & Hall/CRC, Boca Raton, 2004.

    MATH  Google Scholar 

  16. P. B. Gilkey, S. Nikčević, J. Pohjanpelto: The local index formula for a Hermitian manifold. Pac. J. Math. 180 (1997), 51–56.

    Article  MathSciNet  Google Scholar 

  17. P. B. Gilkey, J. H. Park, K. Sekigawa: Universal curvature identities. Differ. Geom. Appl. 29 (2011), 770–778.

    Article  MathSciNet  Google Scholar 

  18. P. Greiner: An asymptotic expansion for the heat equation. Arch. Ration. Mech. Anal. 41 (1971), 163–218.

    Article  MathSciNet  Google Scholar 

  19. F. R. Harvey, G. Minervini: Morse Novikov theory and cohomology with forward supports. Math. Ann. 335 (2006), 787–818.

    Article  MathSciNet  Google Scholar 

  20. B. Helffer, J. Sjöstrand: Puits multiples en mécanique semi-classique IV: Édude du complexe de Witten. Commun. Partial Differ. Equations 10 (1985), 245–340. (In French.)

    Article  Google Scholar 

  21. F. Hirzebruch: Topological Methods in Algebraic Geometry. Die Grundlehren der Mathematischen Wissenschaften 131. Springer, Berlin, 1966.

    Book  Google Scholar 

  22. S.-C. Lee: A Lefschetz Formula for Higher Dimensional Fixed Point Sets: Ph.D. Thesis. Brandeis University, Waltham, 1976.

    Google Scholar 

  23. H. P. McKean, Jr., I. M. Singer: Curvature and the eigenvalues of the Laplacian. J. Differ. Geom. 1 (1967), 43–69.

    Article  MathSciNet  Google Scholar 

  24. G. Minervini: A current approach to Morse and Novikov theories. Rend. Mat. Appl., VII. Ser. 36 (2015), 95–195.

    MathSciNet  MATH  Google Scholar 

  25. S. P. Novikov: Multivalued functions and functionals: An analogue of the Morse theory. Sov. Math., Dokl. 24 (1981), 222–226.

    MATH  Google Scholar 

  26. S. P. Novikov: The Hamiltonian formalism and a many-valued analogue of Morse theory. Russ. Math. Surv. 37 (1982), 1–56.

    Article  Google Scholar 

  27. S. P. Novikov: Bloch homology. Critical points of functions and closed 1-forms. Sov. Math., Dokl. 33 (1986), 551–555.

    MATH  Google Scholar 

  28. V. K. Patodi: An analytic proof of the Riemann-Roch-Hirzebruch theorem for Kaehler manifolds. J. Differ. Geom. 5 (1971), 251–283.

    MathSciNet  MATH  Google Scholar 

  29. V. K. Patodi: Curvature and the eigenforms of the Laplace Operator. J. Differ. Geom. 5 (1971), 233–249.

    MathSciNet  MATH  Google Scholar 

  30. A. V. Pazhitnov: An analytic proof of the real part of Novikov’s inequalities. Sov. Math., Dokl. 35 (1987), 456–457.

    MathSciNet  MATH  Google Scholar 

  31. R. T. Seeley: Complex powers of an elliptic operator. Singular Integrals. Proceedings of Symposia in Pure Mathematics 10. American Mathematical Society, Providence, 1968, pp. 288–307.

    Chapter  Google Scholar 

  32. R. T. Seeley: The resolvent of an elliptic boundary value problem. Am. J. Math. 91 (1969), 889–920.

    Article  Google Scholar 

  33. H. Weyl: The Classical Groups: Their Invariants and Representations. Princeton Mathematical Series 1. Princeton University Press, Princeton, 1946.

    MATH  Google Scholar 

  34. E. Witten: Supersymmetry and Morse theory. J. Differ. Geom. 17 (1982), 661–692.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter B. Gilkey.

Additional information

Research partially supported by Projects MTM2016-75897-P and MTM2017-89686-P (AEI/FEDER, UE).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, J.Á., Gilkey, P.B. The local index density of the perturbed de Rham complex. Czech Math J 71, 901–932 (2021). https://doi.org/10.21136/CMJ.2021.0142-20

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/CMJ.2021.0142-20

Keywords

MSC 2020

Navigation